Editing-Tools / watermark_remover.py
ahmedghani's picture
added more tools
c92867b
import glob
import os
from PIL import Image
import shutil
import concurrent.futures
import gradio as gr
import cv2
import re
import numpy as np
import torch
from lama_cleaner.helper import (
norm_img,
get_cache_path_by_url,
load_jit_model,
)
from lama_cleaner.model.base import InpaintModel
from lama_cleaner.schema import Config
LAMA_MODEL_URL = os.environ.get(
"LAMA_MODEL_URL",
"https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
)
LAMA_MODEL_MD5 = os.environ.get("LAMA_MODEL_MD5", "e3aa4aaa15225a33ec84f9f4bc47e500")
class LaMa(InpaintModel):
name = "lama"
pad_mod = 8
def init_model(self, device, **kwargs):
self.model = load_jit_model(LAMA_MODEL_URL, device, LAMA_MODEL_MD5).eval()
@staticmethod
def is_downloaded() -> bool:
return os.path.exists(get_cache_path_by_url(LAMA_MODEL_URL))
def forward(self, image, mask, config: Config):
"""Input image and output image have same size
image: [H, W, C] RGB
mask: [H, W]
return: BGR IMAGE
"""
image = norm_img(image)
mask = norm_img(mask)
mask = (mask > 0) * 1
image = torch.from_numpy(image).unsqueeze(0).to(self.device)
mask = torch.from_numpy(mask).unsqueeze(0).to(self.device)
inpainted_image = self.model(image, mask)
cur_res = inpainted_image[0].permute(1, 2, 0).detach().cpu().numpy()
cur_res = np.clip(cur_res * 255, 0, 255).astype("uint8")
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR)
return cur_res
lama_model = LaMa("cuda" if torch.cuda.is_available() else "cpu")
config = Config(hd_strategy_crop_margin=196, ldm_steps=25, hd_strategy='Original', hd_strategy_crop_trigger_size=1280, hd_strategy_resize_limit=2048)
def remove_image_watermark(inputs):
alpha_channel = None
image, mask = inputs["image"], inputs["mask"]
if image.mode == "RGBA":
image = np.array(image)
alpha_channel = image[:, :, -1]
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
else:
image = np.array(image)
mask = cv2.threshold(np.array(mask.convert("L")), 127, 255, cv2.THRESH_BINARY)[1]
output = lama_model(image, mask, config)
output = cv2.cvtColor(output.astype(np.uint8), cv2.COLOR_BGR2RGB)
if alpha_channel is not None:
if alpha_channel.shape[:2] != output.shape[:2]:
alpha_channel = cv2.resize(
alpha_channel, dsize=(output.shape[1], output.shape[0])
)
output = np.concatenate(
(output, alpha_channel[:, :, np.newaxis]), axis=-1
)
return Image.fromarray(output)
def process_image(mask_data, image_path):
output = remove_image_watermark({"image": Image.open(image_path), "mask": mask_data})
output_image_path = os.path.join('output_images', os.path.splitext(os.path.basename(image_path))[0] + '_inpainted' + os.path.splitext(image_path)[1])
output.save(output_image_path)
return output_image_path
def remove_video_watermark(sketch, images_path='frames', output_path='output_images'):
if os.path.exists('output_images'):
shutil.rmtree('output_images')
os.makedirs('output_images')
image_paths = glob.glob(f'{images_path}/*.*')
with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
executor.map(lambda image_path: process_image(sketch["mask"], image_path), image_paths)
return gr.File.update(value=convert_frames_to_video('output_images'), visible=True), gr.Button.update(value='Done!')
def convert_video_to_frames(video):
if os.path.exists('input_video.mp4'):
os.remove('input_video.mp4')
# save the video to the current directory from temporary file
with open(video, 'rb') as f:
with open('input_video.mp4', 'wb') as f2:
f2.write(f.read())
# os.system(f"ffmpeg -i {video} input_video.mp4")
video_path = 'input_video.mp4'
if os.path.exists('frames'):
shutil.rmtree('frames')
os.makedirs('frames')
video_name = os.path.splitext(os.path.basename(video_path))[0]
vidcap = cv2.VideoCapture(video_path)
success, image = vidcap.read()
count = 1
while success:
cv2.imwrite(f"frames/{video_name}_{count}.jpg", image)
success, image = vidcap.read()
count += 1
return gr.Image.update(value=f"{os.getcwd()}/frames/{video_name}_1.jpg", interactive=True), gr.Button.update(interactive=True)
def convert_frames_to_video(frames_path):
if os.path.exists('output_video.mp4'):
os.remove('output_video.mp4')
img_array = []
filelist = glob.glob(f"{frames_path}/*.jpg")
# Sort frames by number
frame_numbers = [int(re.findall(r'\d+', os.path.basename(frame))[0]) for frame in filelist]
sorted_frames = [frame for _, frame in sorted(zip(frame_numbers, filelist), key=lambda pair: pair[0])]
for filename in sorted_frames:
img = cv2.imread(filename)
height, width, layers = img.shape
size = (width, height)
img_array.append(img)
out = cv2.VideoWriter('output_video.mp4', cv2.VideoWriter_fourcc(*'mp4v'), 25, size)
for i in range(len(img_array)):
out.write(img_array[i])
out.release()
return 'output_video.mp4'