File size: 6,807 Bytes
8235b4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Authors: Eliya Nachmani (enk100), Yossi Adi (adiyoss), Lior Wolf and Alexandre Defossez (adefossez)

import argparse
from concurrent.futures import ProcessPoolExecutor
import json
import logging
import sys

import numpy as np
from pesq import pesq
from pystoi import stoi
import torch

from .models.sisnr_loss import cal_loss
from .data.data import Validset
from . import distrib
from .utils import bold, deserialize_model, LogProgress


logger = logging.getLogger(__name__)

parser = argparse.ArgumentParser(
    'Evaluate separation performance using MulCat blocks')
parser.add_argument('model_path',
                    help='Path to model file created by training')
parser.add_argument('data_dir',
                    help='directory including mix.json, s1.json, s2.json, ... files')
parser.add_argument('--device', default="cuda")
parser.add_argument('--sdr', type=int, default=0)
parser.add_argument('--sample_rate', default=16000,
                    type=int, help='Sample rate')
parser.add_argument('--num_workers', type=int, default=5)
parser.add_argument('-v', '--verbose', action='store_const', const=logging.DEBUG,
                    default=logging.INFO, help="More loggging")


def evaluate(args, model=None, data_loader=None, sr=None):
    total_sisnr = 0
    total_pesq = 0
    total_stoi = 0
    total_cnt = 0
    updates = 5

    # Load model
    if not model:
        pkg = torch.load(args.model_path, map_location=args.device)
        if 'model' in pkg:
            model = pkg['model']
        else:
            model = pkg
        model = deserialize_model(model)
        if 'best_state' in pkg:
            model.load_state_dict(pkg['best_state'])
    logger.debug(model)
    model.eval()
    model.to(args.device)
    # Load data
    if not data_loader:
        dataset = Validset(args.data_dir)
        data_loader = distrib.loader(
            dataset, batch_size=1, num_workers=args.num_workers)
        sr = args.sample_rate
    pendings = []
    with ProcessPoolExecutor(args.num_workers) as pool:
        with torch.no_grad():
            iterator = LogProgress(logger, data_loader, name="Eval estimates")
            for i, data in enumerate(iterator):
                # Get batch data
                mixture, lengths, sources = [x.to(args.device) for x in data]
                # Forward
                with torch.no_grad():
                    mixture /= mixture.max()
                    estimate = model(mixture)[-1]
                sisnr_loss, snr, estimate, reorder_estimate = cal_loss(
                    sources, estimate, lengths)
                reorder_estimate = reorder_estimate.cpu()
                sources = sources.cpu()
                mixture = mixture.cpu()

                pendings.append(
                    pool.submit(_run_metrics, sources, reorder_estimate, mixture, None,
                                sr=sr))
                total_cnt += sources.shape[0]

            for pending in LogProgress(logger, pendings, updates, name="Eval metrics"):
                sisnr_i, pesq_i, stoi_i = pending.result()
                total_sisnr += sisnr_i
                total_pesq += pesq_i
                total_stoi += stoi_i

    metrics = [total_sisnr, total_pesq, total_stoi]
    sisnr, pesq, stoi = distrib.average(
        [m/total_cnt for m in metrics], total_cnt)
    logger.info(
        bold(f'Test set performance: SISNRi={sisnr:.2f} PESQ={pesq}, STOI={stoi}.'))
    return sisnr, pesq, stoi


def _run_metrics(clean, estimate, mix, model, sr, pesq=False):
    if model is not None:
        torch.set_num_threads(1)
        # parallel evaluation here
        with torch.no_grad():
            estimate = model(estimate)[-1]
    estimate = estimate.numpy()
    clean = clean.numpy()
    mix = mix.numpy()
    sisnr = cal_SISNRi(clean, estimate, mix)
    if pesq:
        pesq_i = cal_PESQ(clean, estimate, sr=sr)
        stoi_i = cal_STOI(clean, estimate, sr=sr)
    else:
        pesq_i = 0
        stoi_i = 0
    return sisnr.mean(), pesq_i, stoi_i


def cal_SISNR(ref_sig, out_sig, eps=1e-8):
    """Calcuate Scale-Invariant Source-to-Noise Ratio (SI-SNR)
    Args:
        ref_sig: numpy.ndarray, [B, T]
        out_sig: numpy.ndarray, [B, T]
    Returns:
        SISNR
    """
    assert len(ref_sig) == len(out_sig)
    B, T = ref_sig.shape
    ref_sig = ref_sig - np.mean(ref_sig, axis=1).reshape(B, 1)
    out_sig = out_sig - np.mean(out_sig, axis=1).reshape(B, 1)
    ref_energy = (np.sum(ref_sig ** 2, axis=1) + eps).reshape(B, 1)
    proj = (np.sum(ref_sig * out_sig, axis=1).reshape(B, 1)) * \
        ref_sig / ref_energy
    noise = out_sig - proj
    ratio = np.sum(proj ** 2, axis=1) / (np.sum(noise ** 2, axis=1) + eps)
    sisnr = 10 * np.log(ratio + eps) / np.log(10.0)
    return sisnr.mean()


def cal_PESQ(ref_sig, out_sig, sr):
    """Calculate PESQ.
    Args:
        ref_sig: numpy.ndarray, [B, C, T]
        out_sig: numpy.ndarray, [B, C, T]
    Returns 
        PESQ
    """
    B, C, T = ref_sig.shape
    ref_sig = ref_sig.reshape(B*C, T)
    out_sig = out_sig.reshape(B*C, T)
    pesq_val = 0
    for i in range(len(ref_sig)):
        pesq_val += pesq(sr, ref_sig[i], out_sig[i], 'nb')
    return pesq_val / (B*C)


def cal_STOI(ref_sig, out_sig, sr):
    """Calculate STOI.
    Args:
        ref_sig: numpy.ndarray, [B, C, T]
        out_sig: numpy.ndarray, [B, C, T]
    Returns:
        STOI
    """
    B, C, T = ref_sig.shape
    ref_sig = ref_sig.reshape(B*C, T)
    out_sig = out_sig.reshape(B*C, T)
    try:
        stoi_val = 0
        for i in range(len(ref_sig)):
            stoi_val += stoi(ref_sig[i], out_sig[i], sr, extended=False)
        return stoi_val / (B*C)
    except:
        return 0


def cal_SISNRi(src_ref, src_est, mix):
    """Calculate Scale-Invariant Source-to-Noise Ratio improvement (SI-SNRi)
    Args:
        src_ref: numpy.ndarray, [B, C, T]
        src_est: numpy.ndarray, [B, C, T], reordered by best PIT permutation
        mix: numpy.ndarray, [T]
    Returns:
        average_SISNRi
    """
    avg_SISNRi = 0.0
    B, C, T = src_ref.shape
    for c in range(C):
        sisnr = cal_SISNR(src_ref[:, c], src_est[:, c])
        sisnrb = cal_SISNR(src_ref[:, c], mix)
        avg_SISNRi += (sisnr - sisnrb)
    avg_SISNRi /= C
    return avg_SISNRi


def main():
    args = parser.parse_args()
    logging.basicConfig(stream=sys.stderr, level=args.verbose)
    logger.debug(args)
    sisnr, pesq, stoi = evaluate(args)
    json.dump({'sisnr': sisnr,
               'pesq': pesq, 'stoi': stoi}, sys.stdout)
    sys.stdout.write('\n')


if __name__ == '__main__':
    main()