Spaces:
Build error
Build error
File size: 7,281 Bytes
8235b4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Authors: Yossi Adi (adiyoss) and Alexandre Defossez (adefossez)
import functools
import logging
from contextlib import contextmanager
import inspect
import os
import time
import math
import torch
logger = logging.getLogger(__name__)
def capture_init(init):
"""
Decorate `__init__` with this, and you can then
recover the *args and **kwargs passed to it in `self._init_args_kwargs`
"""
@functools.wraps(init)
def __init__(self, *args, **kwargs):
self._init_args_kwargs = (args, kwargs)
init(self, *args, **kwargs)
return __init__
def deserialize_model(package, strict=False):
klass = package['class']
if strict:
model = klass(*package['args'], **package['kwargs'])
else:
sig = inspect.signature(klass)
kw = package['kwargs']
for key in list(kw):
if key not in sig.parameters:
logger.warning("Dropping inexistant parameter %s", key)
del kw[key]
model = klass(*package['args'], **kw)
model.load_state_dict(package['state'])
return model
def copy_state(state):
return {k: v.cpu().clone() for k, v in state.items()}
def serialize_model(model):
args, kwargs = model._init_args_kwargs
state = copy_state(model.state_dict())
return {"class": model.__class__, "args": args, "kwargs": kwargs, "state": state}
@contextmanager
def swap_state(model, state):
old_state = copy_state(model.state_dict())
model.load_state_dict(state)
try:
yield
finally:
model.load_state_dict(old_state)
@contextmanager
def swap_cwd(cwd):
old_cwd = os.getcwd()
os.chdir(cwd)
try:
yield
finally:
os.chdir(old_cwd)
def pull_metric(history, name):
out = []
for metrics in history:
if name in metrics:
out.append(metrics[name])
return out
class LogProgress:
"""
Sort of like tqdm but using log lines and not as real time.
"""
def __init__(self, logger, iterable, updates=5, total=None,
name="LogProgress", level=logging.INFO):
self.iterable = iterable
self.total = total or len(iterable)
self.updates = updates
self.name = name
self.logger = logger
self.level = level
def update(self, **infos):
self._infos = infos
def __iter__(self):
self._iterator = iter(self.iterable)
self._index = -1
self._infos = {}
self._begin = time.time()
return self
def __next__(self):
self._index += 1
try:
value = next(self._iterator)
except StopIteration:
raise
else:
return value
finally:
log_every = max(1, self.total // self.updates)
# logging is delayed by 1 it, in order to have the metrics from update
if self._index >= 1 and self._index % log_every == 0:
self._log()
def _log(self):
self._speed = (1 + self._index) / (time.time() - self._begin)
infos = " | ".join(f"{k.capitalize()} {v}" for k,
v in self._infos.items())
if self._speed < 1e-4:
speed = "oo sec/it"
elif self._speed < 0.1:
speed = f"{1/self._speed:.1f} sec/it"
else:
speed = f"{self._speed:.1f} it/sec"
out = f"{self.name} | {self._index}/{self.total} | {speed}"
if infos:
out += " | " + infos
self.logger.log(self.level, out)
def colorize(text, color):
code = f"\033[{color}m"
restore = f"\033[0m"
return "".join([code, text, restore])
def bold(text):
return colorize(text, "1")
def calculate_grad_norm(model):
total_norm = 0.0
is_first = True
for p in model.parameters():
param_norm = p.data.grad.flatten()
if is_first:
total_norm = param_norm
is_first = False
else:
total_norm = torch.cat((total_norm.unsqueeze(
1), p.data.grad.flatten().unsqueeze(1)), dim=0).squeeze(1)
return total_norm.norm(2) ** (1. / 2)
def calculate_weight_norm(model):
total_norm = 0.0
is_first = True
for p in model.parameters():
param_norm = p.data.flatten()
if is_first:
total_norm = param_norm
is_first = False
else:
total_norm = torch.cat((total_norm.unsqueeze(
1), p.data.flatten().unsqueeze(1)), dim=0).squeeze(1)
return total_norm.norm(2) ** (1. / 2)
def remove_pad(inputs, inputs_lengths):
"""
Args:
inputs: torch.Tensor, [B, C, T] or [B, T], B is batch size
inputs_lengths: torch.Tensor, [B]
Returns:
results: a list containing B items, each item is [C, T], T varies
"""
results = []
dim = inputs.dim()
if dim == 3:
C = inputs.size(1)
for input, length in zip(inputs, inputs_lengths):
if dim == 3: # [B, C, T]
results.append(input[:, :length].view(C, -1).cpu().numpy())
elif dim == 2: # [B, T]
results.append(input[:length].view(-1).cpu().numpy())
return results
def overlap_and_add(signal, frame_step):
"""Reconstructs a signal from a framed representation.
Adds potentially overlapping frames of a signal with shape
`[..., frames, frame_length]`, offsetting subsequent frames by `frame_step`.
The resulting tensor has shape `[..., output_size]` where
output_size = (frames - 1) * frame_step + frame_length
Args:
signal: A [..., frames, frame_length] Tensor. All dimensions may be unknown, and rank must be at least 2.
frame_step: An integer denoting overlap offsets. Must be less than or equal to frame_length.
Returns:
A Tensor with shape [..., output_size] containing the overlap-added frames of signal's inner-most two dimensions.
output_size = (frames - 1) * frame_step + frame_length
Based on https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/contrib/signal/python/ops/reconstruction_ops.py
"""
outer_dimensions = signal.size()[:-2]
frames, frame_length = signal.size()[-2:]
# gcd=Greatest Common Divisor
subframe_length = math.gcd(frame_length, frame_step)
subframe_step = frame_step // subframe_length
subframes_per_frame = frame_length // subframe_length
output_size = frame_step * (frames - 1) + frame_length
output_subframes = output_size // subframe_length
subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)
frame = torch.arange(0, output_subframes).unfold(
0, subframes_per_frame, subframe_step)
frame = frame.clone().detach().long().to(signal.device)
# frame = signal.new_tensor(frame).clone().long() # signal may in GPU or CPU
frame = frame.contiguous().view(-1)
result = signal.new_zeros(
*outer_dimensions, output_subframes, subframe_length)
result.index_add_(-2, frame, subframe_signal)
result = result.view(*outer_dimensions, -1)
return result
|