svoice_demo / svoice /evaluate_auto_select.py
ahmedghani's picture
initial commit
8235b4f
raw
history blame
6.66 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Authors: Yossi Adi (adiyoss)
import argparse
from concurrent.futures import ProcessPoolExecutor
import json
import logging
import sys
import numpy as np
from pesq import pesq
from pystoi import stoi
import torch
from .models.sisnr_loss import cal_loss
from .data.data import Validset
from . import distrib
from .utils import bold, deserialize_model, LogProgress
from .evaluate import _run_metrics
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser(
'Evaluate model automatic selection performance')
parser.add_argument('model_path_2spk',
help='Path to 2spk model file created by training')
parser.add_argument('model_path_3spk',
help='Path to 3spk model file created by training')
parser.add_argument('model_path_4spk',
help='Path to 4spk model file created by training')
parser.add_argument('model_path_5spk',
help='Path to 5spk model file created by training')
parser.add_argument(
'data_dir', help='directory including mix.json, s1.json and s2.json files')
parser.add_argument('--device', default="cuda")
parser.add_argument('--sample_rate', default=8000,
type=int, help='Sample rate')
parser.add_argument('--thresh', default=0.001,
type=float, help='Threshold for model auto selection')
parser.add_argument('--num_workers', type=int, default=5)
parser.add_argument('-v', '--verbose', action='store_const', const=logging.DEBUG,
default=logging.INFO, help="More loggging")
# test pariwise matching
def pair_wise(padded_source, estimate_source):
pair_wise = torch.sum(padded_source.unsqueeze(
1)*estimate_source.unsqueeze(2), dim=3)
if estimate_source.shape[1] != padded_source.shape[1]:
idxs = pair_wise.argmax(dim=1)
new_src = torch.FloatTensor(padded_source.shape)
for b, idx in enumerate(idxs):
new_src[b:, :, ] = estimate_source[b][idx]
padded_source_pad = padded_source
estimate_source_pad = new_src.cuda()
else:
padded_source_pad = padded_source
estimate_source_pad = estimate_source
return estimate_source_pad
def evaluate_auto_select(args):
total_sisnr = 0
total_pesq = 0
total_stoi = 0
total_cnt = 0
updates = 5
models = list()
paths = [args.model_path_2spk, args.model_path_3spk,
args.model_path_4spk, args.model_path_5spk]
for path in paths:
# Load model
pkg = torch.load(path)
if 'model' in pkg:
model = pkg['model']
else:
model = pkg
model = deserialize_model(model)
if 'best_state' in pkg:
model.load_state_dict(pkg['best_state'])
logger.debug(model)
model.eval()
model.to(args.device)
models.append(model)
# Load data
dataset = Validset(args.data_dir)
data_loader = distrib.loader(
dataset, batch_size=1, num_workers=args.num_workers)
sr = args.sample_rate
y_hat = torch.zeros((4))
pendings = []
with ProcessPoolExecutor(args.num_workers) as pool:
with torch.no_grad():
iterator = LogProgress(logger, data_loader, name="Eval estimates")
for i, data in enumerate(iterator):
# Get batch data
mixture, lengths, sources = [x.to(args.device) for x in data]
estimated_sources = list()
reorder_estimated_sources = list()
for model in models:
# Forward
with torch.no_grad():
raw_estimate = model(mixture)[-1]
estimate = pair_wise(sources, raw_estimate)
sisnr_loss, snr, estimate, reorder_estimate = cal_loss(
sources, estimate, lengths)
estimated_sources.insert(0, raw_estimate)
reorder_estimated_sources.insert(0, reorder_estimate)
# =================== DETECT NUM. NON-ACTIVE CHANNELS ============== #
selected_idx = 0
thresh = args.thresh
max_spk = 5
mix_spk = 2
ground = (max_spk - mix_spk)
while (selected_idx <= ground):
no_sils = 0
vals = torch.mean(
(estimated_sources[selected_idx]/torch.abs(estimated_sources[selected_idx]).max())**2, axis=2)
new_selected_idx = max_spk - len(vals[vals > thresh])
if new_selected_idx == selected_idx:
break
else:
selected_idx = new_selected_idx
if selected_idx < 0:
selected_idx = 0
elif selected_idx > ground:
selected_idx = ground
y_hat[ground - selected_idx] += 1
reorder_estimate = reorder_estimated_sources[selected_idx].cpu(
)
sources = sources.cpu()
mixture = mixture.cpu()
pendings.append(
pool.submit(_run_metrics, sources, reorder_estimate, mixture, None,
sr=sr))
total_cnt += sources.shape[0]
for pending in LogProgress(logger, pendings, updates, name="Eval metrics"):
sisnr_i, pesq_i, stoi_i = pending.result()
total_sisnr += sisnr_i
total_pesq += pesq_i
total_stoi += stoi_i
metrics = [total_sisnr, total_pesq, total_stoi]
sisnr, pesq, stoi = distrib.average(
[m/total_cnt for m in metrics], total_cnt)
logger.info(bold(f'Test set performance: SISNRi={sisnr:.2f} '
f'PESQ={pesq}, STOI={stoi}.'))
logger.info(f'Two spks prob: {y_hat[0]/(total_cnt)}')
logger.info(f'Three spks prob: {y_hat[1]/(total_cnt)}')
logger.info(f'Four spks prob: {y_hat[2]/(total_cnt)}')
logger.info(f'Five spks prob: {y_hat[3]/(total_cnt)}')
return sisnr, pesq, stoi
def main():
args = parser.parse_args()
logging.basicConfig(stream=sys.stderr, level=args.verbose)
logger.debug(args)
sisnr, pesq, stoi = evaluate_auto_select(args)
json.dump({'sisnr': sisnr,
'pesq': pesq, 'stoi': stoi}, sys.stdout)
sys.stdout.write('\n')
if __name__ == '__main__':
main()