Spaces:
Runtime error
Runtime error
import numpy as np | |
import PIL.Image as Image | |
import spaces | |
import torch | |
from app import ( | |
build_demo, | |
compute_gmm_likelihood, | |
load_model_from_hub, | |
plot_against_reference, | |
plot_heatmap, | |
) | |
def run_inference(model, img): | |
model = model.to('cuda') | |
img = img.to('cuda') | |
print("model on cuda:", next(model.scorenet.net.parameters()).is_cuda) | |
print("img on cuda:", img.is_cuda) | |
img = torch.nn.functional.interpolate(img, size=64, mode="bilinear") | |
score_norms = model.scorenet(img) | |
score_norms = score_norms.square().sum(dim=(2, 3, 4)) ** 0.5 | |
img_likelihood = model(img).cpu().numpy() | |
score_norms = score_norms.cpu().numpy() | |
return img_likelihood, score_norms | |
def localize_anomalies(input_img, preset="edm2-img64-s-fid", load_from_hub=False): | |
device = "cuda" | |
input_img = input_img.resize(size=(64, 64), resample=Image.Resampling.LANCZOS) | |
img = np.array(input_img) | |
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0) | |
img = img.float().to(device) | |
model = load_model_from_hub(preset=preset, device=device) | |
img_likelihood, score_norms = run_inference(model, img) | |
nll, pct, ref_nll = compute_gmm_likelihood( | |
score_norms, model_dir=f"models/{preset}" | |
) | |
outstr = f"Anomaly score: {nll:.3f} / {pct:.2f} percentile" | |
histplot = plot_against_reference(nll, ref_nll) | |
heatmapplot = plot_heatmap(input_img, img_likelihood) | |
return outstr, heatmapplot, histplot | |
demo = build_demo(localize_anomalies) | |
if __name__ == "__main__": | |
demo.launch() | |