ahsanMah's picture
+ grabbing gmm from hf hub
77269e5
raw
history blame
1.58 kB
import numpy as np
import PIL.Image as Image
import spaces
import torch
from app import (
build_demo,
compute_gmm_likelihood,
load_model_from_hub,
plot_against_reference,
plot_heatmap,
)
@spaces.GPU
@torch.no_grad
def run_inference(model, img):
model = model.to('cuda')
img = img.to('cuda')
print("model on cuda:", next(model.scorenet.net.parameters()).is_cuda)
print("img on cuda:", img.is_cuda)
img = torch.nn.functional.interpolate(img, size=64, mode="bilinear")
score_norms = model.scorenet(img)
score_norms = score_norms.square().sum(dim=(2, 3, 4)) ** 0.5
img_likelihood = model(img).cpu().numpy()
score_norms = score_norms.cpu().numpy()
return img_likelihood, score_norms
def localize_anomalies(input_img, preset="edm2-img64-s-fid", load_from_hub=False):
device = "cuda"
input_img = input_img.resize(size=(64, 64), resample=Image.Resampling.LANCZOS)
img = np.array(input_img)
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0)
img = img.float().to(device)
model = load_model_from_hub(preset=preset, device=device)
img_likelihood, score_norms = run_inference(model, img)
nll, pct, ref_nll = compute_gmm_likelihood(
score_norms, model_dir=f"models/{preset}"
)
outstr = f"Anomaly score: {nll:.3f} / {pct:.2f} percentile"
histplot = plot_against_reference(nll, ref_nll)
heatmapplot = plot_heatmap(input_img, img_likelihood)
return outstr, heatmapplot, histplot
demo = build_demo(localize_anomalies)
if __name__ == "__main__":
demo.launch()