Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,532 +1,3 @@
|
|
1 |
-
from
|
2 |
|
3 |
-
|
4 |
-
import holoviews as hv
|
5 |
-
import pandas as pd
|
6 |
-
import panel as pn
|
7 |
-
from bokeh.models import HoverTool
|
8 |
-
from bokeh.models import NumeralTickFormatter
|
9 |
-
from pydantic import BaseModel, Field
|
10 |
-
from langchain.callbacks.base import BaseCallbackHandler
|
11 |
-
from langchain.chat_models import ChatOpenAI
|
12 |
-
from langchain.llms.openai import OpenAI
|
13 |
-
from langchain.output_parsers import PydanticOutputParser
|
14 |
-
from langchain.pydantic_v1 import BaseModel, Field, validator
|
15 |
-
from langchain.memory import ConversationBufferMemory
|
16 |
-
from langchain.chains import ConversationChain
|
17 |
-
from langchain.prompts import PromptTemplate
|
18 |
-
|
19 |
-
pn.extension(sizing_mode="stretch_width", notifications=True)
|
20 |
-
hv.extension("bokeh")
|
21 |
-
|
22 |
-
INSTRUCTIONS = """
|
23 |
-
#### Name Chronicles lets you explore the history of names in the United States.
|
24 |
-
- Enter a name to add to plot!
|
25 |
-
- Hover over a line for stats or click for the gender distribution.
|
26 |
-
- Chat with AI for inspiration or get a random name based on input criteria.
|
27 |
-
- Have ideas? [Open an issue](https://github.com/ahuang11/name-chronicles/issues).
|
28 |
-
"""
|
29 |
-
|
30 |
-
RANDOM_NAME_QUERY = """
|
31 |
-
SELECT name, count,
|
32 |
-
CASE
|
33 |
-
WHEN female_percent >= 0.2 AND female_percent <= 0.8 AND male_percent >= 0.2 AND male_percent <= 0.8 THEN 'unisex'
|
34 |
-
WHEN female_percent > 0.5 THEN 'female'
|
35 |
-
WHEN male_percent > 0.5 THEN 'male'
|
36 |
-
END AS gender
|
37 |
-
FROM (
|
38 |
-
SELECT
|
39 |
-
name,
|
40 |
-
MAX(male + female) AS count,
|
41 |
-
(SUM(female) / CAST(SUM(male + female) AS REAL)) AS female_percent,
|
42 |
-
(SUM(male) / CAST(SUM(male + female) AS REAL)) AS male_percent
|
43 |
-
FROM names
|
44 |
-
WHERE name LIKE ?
|
45 |
-
GROUP BY name
|
46 |
-
)
|
47 |
-
WHERE count >= ? AND count <= ?
|
48 |
-
AND gender = ?
|
49 |
-
ORDER BY RANDOM()
|
50 |
-
LIMIT 100
|
51 |
-
"""
|
52 |
-
|
53 |
-
TOP_NAMES_WILDCARD_QUERY = """
|
54 |
-
SELECT name, SUM(male + female) as count
|
55 |
-
FROM names
|
56 |
-
WHERE lower(name) LIKE ?
|
57 |
-
GROUP BY name
|
58 |
-
ORDER BY count DESC
|
59 |
-
LIMIT 10
|
60 |
-
"""
|
61 |
-
|
62 |
-
TOP_NAMES_SELECT_QUERY = """
|
63 |
-
SELECT name, SUM(male + female) as count
|
64 |
-
FROM names
|
65 |
-
WHERE lower(name) = ?
|
66 |
-
GROUP BY name
|
67 |
-
ORDER BY count DESC
|
68 |
-
"""
|
69 |
-
|
70 |
-
DATA_QUERY = """
|
71 |
-
SELECT name, year, male, female, SUM(male + female) AS count
|
72 |
-
FROM names
|
73 |
-
WHERE name in ({placeholders})
|
74 |
-
GROUP BY name, year, male, female
|
75 |
-
ORDER BY name, year
|
76 |
-
"""
|
77 |
-
|
78 |
-
MAX_LLM_COUNT = 2000
|
79 |
-
|
80 |
-
class FirstNames(BaseModel):
|
81 |
-
names: list[str] = Field(description="List of first names")
|
82 |
-
|
83 |
-
|
84 |
-
class StreamHandler(BaseCallbackHandler):
|
85 |
-
def __init__(self, container, initial_text="", target_attr="value"):
|
86 |
-
self.container = container
|
87 |
-
self.text = initial_text
|
88 |
-
self.target_attr = target_attr
|
89 |
-
|
90 |
-
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
91 |
-
self.text += token
|
92 |
-
setattr(self.container, self.target_attr, self.text)
|
93 |
-
|
94 |
-
|
95 |
-
class NameChronicles:
|
96 |
-
def __init__(self):
|
97 |
-
super().__init__()
|
98 |
-
self.llm_use_counter = 0
|
99 |
-
self.db_path = Path("data/names.db")
|
100 |
-
|
101 |
-
# Main
|
102 |
-
self.scatter_cycle = hv.Cycle("Category10")
|
103 |
-
self.curve_cycle = hv.Cycle("Category10")
|
104 |
-
self.label_cycle = hv.Cycle("Category10")
|
105 |
-
self.holoviews_pane = pn.pane.HoloViews(
|
106 |
-
min_height=675, sizing_mode="stretch_both"
|
107 |
-
)
|
108 |
-
self.selection = hv.streams.Selection1D()
|
109 |
-
|
110 |
-
# Sidebar
|
111 |
-
|
112 |
-
# Name Widgets
|
113 |
-
self.names_input = pn.widgets.TextInput(name="Name Input", placeholder="Andrew")
|
114 |
-
self.names_input.param.watch(self._add_name, "value")
|
115 |
-
|
116 |
-
self.names_choice = pn.widgets.MultiChoice(
|
117 |
-
name="Selected Names",
|
118 |
-
options=["Andrew"],
|
119 |
-
solid=False,
|
120 |
-
)
|
121 |
-
self.names_choice.param.watch(self._update_plot, "value")
|
122 |
-
|
123 |
-
# Reset Widgets
|
124 |
-
self.clear_button = pn.widgets.Button(
|
125 |
-
name="Clear Names", button_style="outline", button_type="primary"
|
126 |
-
)
|
127 |
-
self.clear_button.on_click(
|
128 |
-
lambda event: setattr(self.names_choice, "value", [])
|
129 |
-
)
|
130 |
-
self.refresh_button = pn.widgets.Button(
|
131 |
-
name="Refresh Plot", button_style="outline", button_type="primary"
|
132 |
-
)
|
133 |
-
self.refresh_button.on_click(self._refresh_plot)
|
134 |
-
|
135 |
-
# Randomize Widgets
|
136 |
-
self.name_pattern = pn.widgets.TextInput(
|
137 |
-
name="Name Pattern", placeholder="*na*"
|
138 |
-
)
|
139 |
-
self.count_range = pn.widgets.IntRangeSlider(
|
140 |
-
name="Peak Count Range",
|
141 |
-
value=(0, 100000),
|
142 |
-
start=0,
|
143 |
-
end=100000,
|
144 |
-
step=1000,
|
145 |
-
margin=(5, 20),
|
146 |
-
)
|
147 |
-
self.gender_select = pn.widgets.RadioButtonGroup(
|
148 |
-
name="Gender",
|
149 |
-
options=["Female", "Unisex", "Male"],
|
150 |
-
button_style="outline",
|
151 |
-
button_type="primary",
|
152 |
-
)
|
153 |
-
randomize_name = pn.widgets.Button(
|
154 |
-
name="Get Name", button_style="outline", button_type="primary"
|
155 |
-
)
|
156 |
-
randomize_name.param.watch(self._randomize_name, "clicks")
|
157 |
-
self.randomize_pane = pn.Card(
|
158 |
-
self.name_pattern,
|
159 |
-
self.count_range,
|
160 |
-
self.gender_select,
|
161 |
-
randomize_name,
|
162 |
-
title="Get Random Name",
|
163 |
-
collapsed=True,
|
164 |
-
)
|
165 |
-
|
166 |
-
# AI Widgets
|
167 |
-
self.chat_interface = pn.chat.ChatInterface(
|
168 |
-
show_button_name=False,
|
169 |
-
callback=self._prompt_ai,
|
170 |
-
height=500,
|
171 |
-
styles={"background": "white"},
|
172 |
-
disabled=True,
|
173 |
-
)
|
174 |
-
self.chat_interface.send(
|
175 |
-
value=(
|
176 |
-
"Ask me about name suggestions or their history! "
|
177 |
-
"To add suggested names, click the button below!"
|
178 |
-
),
|
179 |
-
user="System",
|
180 |
-
respond=False,
|
181 |
-
)
|
182 |
-
self.parse_ai_button = pn.widgets.Button(
|
183 |
-
name="Parse and Add Names",
|
184 |
-
button_style="outline",
|
185 |
-
button_type="primary",
|
186 |
-
disabled=True,
|
187 |
-
)
|
188 |
-
self.last_ai_output = None
|
189 |
-
pn.state.onload(self._initialize_database)
|
190 |
-
|
191 |
-
# Database Methods
|
192 |
-
|
193 |
-
def _initialize_database(self):
|
194 |
-
"""
|
195 |
-
Initialize database with data from the Social Security Administration.
|
196 |
-
"""
|
197 |
-
self.conn = duckdb.connect(":memory:")
|
198 |
-
df = pd.concat(
|
199 |
-
[
|
200 |
-
pd.read_csv(
|
201 |
-
path,
|
202 |
-
header=None,
|
203 |
-
names=["state", "gender", "year", "name", "count"],
|
204 |
-
)
|
205 |
-
for path in Path("data").glob("*.TXT")
|
206 |
-
]
|
207 |
-
)
|
208 |
-
df_processed = (
|
209 |
-
df.groupby(["gender", "year", "name"], as_index=False)[["count"]]
|
210 |
-
.sum()
|
211 |
-
.pivot(index=["name", "year"], columns="gender", values="count")
|
212 |
-
.reset_index()
|
213 |
-
.rename(columns={"F": "female", "M": "male"})
|
214 |
-
.fillna(0)
|
215 |
-
)
|
216 |
-
self.conn.execute("DROP TABLE IF EXISTS names")
|
217 |
-
self.conn.execute("CREATE TABLE names AS SELECT * FROM df_processed")
|
218 |
-
|
219 |
-
if self.names_choice.value == []:
|
220 |
-
self.names_choice.value = ["Andrew"]
|
221 |
-
else:
|
222 |
-
self.names_choice.param.trigger("value")
|
223 |
-
self.main.objects = [self.holoviews_pane]
|
224 |
-
|
225 |
-
# Start AI
|
226 |
-
self.callback_handler = pn.chat.langchain.PanelCallbackHandler(
|
227 |
-
self.chat_interface
|
228 |
-
)
|
229 |
-
self.chat_openai = ChatOpenAI(
|
230 |
-
max_tokens=75,
|
231 |
-
streaming=True,
|
232 |
-
callbacks=[self.callback_handler],
|
233 |
-
)
|
234 |
-
self.openai = OpenAI(max_tokens=75)
|
235 |
-
memory = ConversationBufferMemory()
|
236 |
-
self.conversation_chain = ConversationChain(
|
237 |
-
llm=self.chat_openai, memory=memory, callbacks=[self.callback_handler]
|
238 |
-
)
|
239 |
-
self.chat_interface.disabled = False
|
240 |
-
self.parse_ai_button.on_click(self._parse_ai_output)
|
241 |
-
self.pydantic_parser = PydanticOutputParser(pydantic_object=FirstNames)
|
242 |
-
self.prompt_template = PromptTemplate(
|
243 |
-
template="{format_instructions}\n{input}\n",
|
244 |
-
input_variables=["input"],
|
245 |
-
partial_variables={"format_instructions": self.pydantic_parser.get_format_instructions()},
|
246 |
-
)
|
247 |
-
|
248 |
-
def _query_names(self, names):
|
249 |
-
"""
|
250 |
-
Query the database for the given name.
|
251 |
-
"""
|
252 |
-
dfs = []
|
253 |
-
for name in names:
|
254 |
-
if "*" in name or "%" in name:
|
255 |
-
name = name.replace("*", "%")
|
256 |
-
top_names_query = TOP_NAMES_WILDCARD_QUERY
|
257 |
-
else:
|
258 |
-
top_names_query = TOP_NAMES_SELECT_QUERY
|
259 |
-
top_names = (
|
260 |
-
self.conn.execute(top_names_query, [name.lower()])
|
261 |
-
.fetch_df()["name"]
|
262 |
-
.tolist()
|
263 |
-
)
|
264 |
-
if len(top_names) == 0:
|
265 |
-
pn.state.notifications.info(f"No names found matching {name!r}")
|
266 |
-
continue
|
267 |
-
data_query = DATA_QUERY.format(
|
268 |
-
placeholders=", ".join(["?"] * len(top_names))
|
269 |
-
)
|
270 |
-
df = self.conn.execute(data_query, top_names).fetch_df()
|
271 |
-
dfs.append(df)
|
272 |
-
|
273 |
-
if len(dfs) > 0:
|
274 |
-
self.df = pd.concat(dfs).drop_duplicates(
|
275 |
-
subset=["name", "year", "male", "female"]
|
276 |
-
)
|
277 |
-
else:
|
278 |
-
self.df = pd.DataFrame(columns=["name", "year", "male", "female"])
|
279 |
-
|
280 |
-
# Widget Methods
|
281 |
-
|
282 |
-
def _randomize_name(self, event):
|
283 |
-
name_pattern = self.name_pattern.value.lower()
|
284 |
-
if not name_pattern:
|
285 |
-
name_pattern = "%"
|
286 |
-
else:
|
287 |
-
name_pattern = name_pattern.replace("*", "%")
|
288 |
-
if not name_pattern.startswith("%"):
|
289 |
-
name_pattern = name_pattern.title()
|
290 |
-
|
291 |
-
count_range = self.count_range.value
|
292 |
-
gender_select = self.gender_select.value.lower()
|
293 |
-
random_names = (
|
294 |
-
self.conn.execute(
|
295 |
-
RANDOM_NAME_QUERY, [name_pattern, *count_range, gender_select]
|
296 |
-
).fetch_df()["name"]
|
297 |
-
.tolist()
|
298 |
-
)
|
299 |
-
print(len(random_names))
|
300 |
-
if random_names:
|
301 |
-
for i in range(len(random_names)):
|
302 |
-
random_name = random_names[i]
|
303 |
-
if random_name in self.names_choice.value:
|
304 |
-
continue
|
305 |
-
self.names_input.value = random_name
|
306 |
-
break
|
307 |
-
else:
|
308 |
-
pn.state.notifications.info(
|
309 |
-
"All names matching the criteria are already added!"
|
310 |
-
)
|
311 |
-
else:
|
312 |
-
pn.state.notifications.info("No names found matching the criteria!")
|
313 |
-
|
314 |
-
def _add_only_unique_names(self, names):
|
315 |
-
value = self.names_choice.value.copy()
|
316 |
-
options = self.names_choice.options.copy()
|
317 |
-
for name in names:
|
318 |
-
if " " in name:
|
319 |
-
name = name.split(" ", 1)[0]
|
320 |
-
if name not in options:
|
321 |
-
options.append(name)
|
322 |
-
if name not in value:
|
323 |
-
value.append(name)
|
324 |
-
self.names_choice.param.update(
|
325 |
-
options=options,
|
326 |
-
value=value,
|
327 |
-
)
|
328 |
-
|
329 |
-
def _add_name(self, event):
|
330 |
-
name = event.new.strip().title()
|
331 |
-
self.names_input.value = ""
|
332 |
-
if not name:
|
333 |
-
return
|
334 |
-
elif name in self.names_choice.options and name in self.names_choice.value:
|
335 |
-
pn.state.notifications.info(f"{name!r} already added!")
|
336 |
-
return
|
337 |
-
elif len(self.names_choice.value) > 10:
|
338 |
-
pn.state.notifications.info(
|
339 |
-
"Maximum of 10 names allowed; please remove some first!"
|
340 |
-
)
|
341 |
-
return
|
342 |
-
self._add_only_unique_names([name])
|
343 |
-
|
344 |
-
async def _prompt_ai(self, contents, user, instance):
|
345 |
-
if self.llm_use_counter >= MAX_LLM_COUNT:
|
346 |
-
pn.state.notifications.info(
|
347 |
-
"Sorry, all the available AI credits have been used!"
|
348 |
-
)
|
349 |
-
return
|
350 |
-
|
351 |
-
prompt = (
|
352 |
-
f"One sentence reply to {contents!r} or concisely suggest other relevant names; "
|
353 |
-
f"if no name is provided use {self.names_choice.value[-1]!r}."
|
354 |
-
)
|
355 |
-
print(prompt)
|
356 |
-
self.last_ai_output = await self.conversation_chain.apredict(
|
357 |
-
input=prompt,
|
358 |
-
callbacks=[self.callback_handler],
|
359 |
-
)
|
360 |
-
self.parse_ai_button.disabled = False
|
361 |
-
self.llm_use_counter += 1
|
362 |
-
|
363 |
-
async def _parse_ai_output(self, _):
|
364 |
-
if self.llm_use_counter >= MAX_LLM_COUNT:
|
365 |
-
pn.state.notifications.info(
|
366 |
-
"Sorry, all the available AI credits have been used!"
|
367 |
-
)
|
368 |
-
return
|
369 |
-
|
370 |
-
if self.last_ai_output is None:
|
371 |
-
pn.state.notifications.info("No available AI output to parse!")
|
372 |
-
return
|
373 |
-
|
374 |
-
try:
|
375 |
-
names_prompt = self.prompt_template.format_prompt(input=self.last_ai_output).to_string()
|
376 |
-
names_text = await self.openai.apredict(names_prompt)
|
377 |
-
new_names = (await self.pydantic_parser.aparse(names_text)).names
|
378 |
-
print(new_names)
|
379 |
-
self._add_only_unique_names(new_names)
|
380 |
-
except Exception:
|
381 |
-
pn.state.notifications.error("Failed to parse AI output.")
|
382 |
-
finally:
|
383 |
-
self.last_ai_output = None
|
384 |
-
|
385 |
-
# Plot Methods
|
386 |
-
def _click_plot(self, index):
|
387 |
-
gender_nd_overlay = hv.NdOverlay(kdims=["Gender"])
|
388 |
-
if not index:
|
389 |
-
return hv.NdOverlay(
|
390 |
-
{
|
391 |
-
"curve": self._curve_nd_overlay,
|
392 |
-
"scatter": self._scatter_nd_overlay,
|
393 |
-
"label": self._label_nd_overlay,
|
394 |
-
}
|
395 |
-
)
|
396 |
-
|
397 |
-
name = self._name_indices[index[0]]
|
398 |
-
df_name = self.df.loc[self.df["name"] == name].copy()
|
399 |
-
df_name["female"] += df_name["male"]
|
400 |
-
gender_nd_overlay["Male"] = hv.Area(
|
401 |
-
df_name, ["year"], ["male"], label="Male"
|
402 |
-
).opts(alpha=0.3, color="#add8e6", line_alpha=0)
|
403 |
-
gender_nd_overlay["Female"] = hv.Area(
|
404 |
-
df_name, ["year"], ["male", "female"], label="Female"
|
405 |
-
).opts(alpha=0.3, color="#ffb6c1", line_alpha=0)
|
406 |
-
return hv.NdOverlay(
|
407 |
-
{
|
408 |
-
"curve": self._curve_nd_overlay[[index[0]]],
|
409 |
-
"scatter": self._scatter_nd_overlay,
|
410 |
-
"label": self._label_nd_overlay[[index[0]]].opts(text_color="black"),
|
411 |
-
"gender": gender_nd_overlay,
|
412 |
-
},
|
413 |
-
kdims=["Gender"],
|
414 |
-
).opts(legend_position="top_left")
|
415 |
-
|
416 |
-
def _update_plot(self, event):
|
417 |
-
names = event.new
|
418 |
-
print(names)
|
419 |
-
self._query_names(names)
|
420 |
-
|
421 |
-
self._scatter_nd_overlay = hv.NdOverlay()
|
422 |
-
self._curve_nd_overlay = hv.NdOverlay(kdims=["Name"]).opts(
|
423 |
-
gridstyle={"xgrid_line_width": 0},
|
424 |
-
show_grid=True,
|
425 |
-
fontscale=1.28,
|
426 |
-
xlabel="Year",
|
427 |
-
ylabel="Count",
|
428 |
-
yformatter=NumeralTickFormatter(format="0.0a"),
|
429 |
-
legend_limit=0,
|
430 |
-
padding=(0.2, 0.05),
|
431 |
-
title="Name Chronicles",
|
432 |
-
responsive=True,
|
433 |
-
)
|
434 |
-
self._label_nd_overlay = hv.NdOverlay(kdims=["Name"])
|
435 |
-
hover_tool = HoverTool(
|
436 |
-
tooltips=[("Name", "@name"), ("Year", "@year"), ("Count", "@count")],
|
437 |
-
)
|
438 |
-
self._name_indices = {}
|
439 |
-
for i, (name, df_name) in enumerate(self.df.groupby("name")):
|
440 |
-
df_name_total = df_name.groupby(
|
441 |
-
["name", "year", "male", "female"], as_index=False
|
442 |
-
)["count"].sum()
|
443 |
-
df_name_total["male"] = df_name_total["male"] / df_name_total["count"]
|
444 |
-
df_name_total["female"] = df_name_total["female"] / df_name_total["count"]
|
445 |
-
df_name_peak = df_name.loc[[df_name["count"].idxmax()]]
|
446 |
-
df_name_peak[
|
447 |
-
"label"
|
448 |
-
] = f'{df_name_peak["name"].item()} ({df_name_peak["year"].item()})'
|
449 |
-
|
450 |
-
hover_tool = HoverTool(
|
451 |
-
tooltips=[
|
452 |
-
("Name", "@name"),
|
453 |
-
("Year", "@year"),
|
454 |
-
("Count", "@count{(0a)}"),
|
455 |
-
("Male", "@male{(0%)}"),
|
456 |
-
("Female", "@female{(0%)}"),
|
457 |
-
],
|
458 |
-
)
|
459 |
-
self._scatter_nd_overlay[i] = hv.Scatter(
|
460 |
-
df_name_total, ["year"], ["count", "male", "female", "name"], label=name
|
461 |
-
).opts(
|
462 |
-
color=self.scatter_cycle,
|
463 |
-
size=4,
|
464 |
-
alpha=0.15,
|
465 |
-
marker="y",
|
466 |
-
tools=["tap", hover_tool],
|
467 |
-
line_width=3,
|
468 |
-
show_legend=False,
|
469 |
-
)
|
470 |
-
self._curve_nd_overlay[i] = hv.Curve(
|
471 |
-
df_name_total, ["year"], ["count"], label=name
|
472 |
-
).opts(
|
473 |
-
color=self.curve_cycle,
|
474 |
-
tools=["tap"],
|
475 |
-
line_width=3,
|
476 |
-
)
|
477 |
-
self._label_nd_overlay[i] = hv.Labels(
|
478 |
-
df_name_peak, ["year", "count"], ["label"], label=name
|
479 |
-
).opts(
|
480 |
-
text_align="right",
|
481 |
-
text_baseline="bottom",
|
482 |
-
text_color=self.label_cycle,
|
483 |
-
)
|
484 |
-
self._name_indices[i] = name
|
485 |
-
self.selection.source = self._curve_nd_overlay
|
486 |
-
if len(self._name_indices) == 1:
|
487 |
-
self.selection.update(index=[0])
|
488 |
-
else:
|
489 |
-
self.selection.update(index=[])
|
490 |
-
self.dynamic_map = hv.DynamicMap(
|
491 |
-
self._click_plot, kdims=[], streams=[self.selection]
|
492 |
-
).opts(responsive=True)
|
493 |
-
self._refresh_plot()
|
494 |
-
|
495 |
-
def _refresh_plot(self, event=None):
|
496 |
-
self.holoviews_pane.object = self.dynamic_map.clone()
|
497 |
-
|
498 |
-
def view(self):
|
499 |
-
reset_row = pn.Row(self.clear_button, self.refresh_button)
|
500 |
-
data_url = pn.pane.Markdown(
|
501 |
-
"<center>Data from the <a href='https://www.ssa.gov/oact/babynames/limits.html' "
|
502 |
-
"target='_blank'>U.S. Social Security Administration</a></center>",
|
503 |
-
align="end",
|
504 |
-
)
|
505 |
-
sidebar = pn.Column(
|
506 |
-
INSTRUCTIONS,
|
507 |
-
self.names_input,
|
508 |
-
self.names_choice,
|
509 |
-
reset_row,
|
510 |
-
pn.layout.Divider(),
|
511 |
-
self.chat_interface,
|
512 |
-
self.parse_ai_button,
|
513 |
-
self.randomize_pane,
|
514 |
-
data_url,
|
515 |
-
)
|
516 |
-
self.main = pn.Column(
|
517 |
-
pn.widgets.StaticText(
|
518 |
-
value="Loading, this may take a few seconds...",
|
519 |
-
sizing_mode="stretch_both",
|
520 |
-
),
|
521 |
-
)
|
522 |
-
template = pn.template.FastListTemplate(
|
523 |
-
sidebar_width=500,
|
524 |
-
sidebar=[sidebar],
|
525 |
-
main=[self.main],
|
526 |
-
title="Name Chronicles",
|
527 |
-
theme="dark",
|
528 |
-
)
|
529 |
-
return template
|
530 |
-
|
531 |
-
|
532 |
-
NameChronicles().view().servable()
|
|
|
1 |
+
from tastymap import TastyKitchen
|
2 |
|
3 |
+
TastyKitchen().servable()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|