Spaces:
Running
Running
File size: 24,187 Bytes
b9a0f21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
# Plotting with Bokeh
```python
import numpy as np
import pandas as pd
import holoviews as hv
from holoviews import dim, opts
hv.extension('bokeh')
```
One of the major design principles of HoloViews is that the declaration of data is completely independent from the plotting implementation. Bokeh provides a powerful platform to generate interactive plots using HTML5 canvas and WebGL, and is ideally suited towards interactive exploration of data. By combining the ease of generating interactive, high-dimensional visualizations with the interactive widgets and fast rendering provided by Bokeh, HoloViews becomes even more powerful.
This user guide will cover various interactive features that bokeh provides which is not covered by the more general user guides, including interactive tools, linked axes and brushing and more. The general principles behind customizing plots and styling the visual elements of a plot are covered in the [Style Mapping](04-Style_Mapping.ipynb) and [Customizing Plots](Customizing_Plots.ipynb) user guides.
## Working with bokeh directly
When HoloViews outputs bokeh plots it creates and manipulates bokeh models in the background. If at any time you need access to the underlying Bokeh representation of an object you can use the ``hv.render`` function to convert it. For example let us convert a HoloViews ``Image`` to a bokeh Figure, which will let us access and modify every aspect of the plot:
```python
img = hv.Image(np.random.rand(10, 10))
fig = hv.render(img)
print('Figure: ', fig)
print('Renderers: ', fig.renderers[-1].glyph)
```
## Exporting static files
Bokeh supports static export to png's using ``Selenium``, ``PhantomJS`` and ``pillow``, to install the required dependencies run:
```
conda install selenium phantomjs pillow
```
alternatively install PhantomJS from npm using:
```
npm install -g phantomjs-prebuilt
```
To switch to png output persistently you can run:
```
hv.output(fig='png')
```
```python
violin = hv.Violin(np.random.randn(100))
hv.output(violin, fig='png')
```
The exported png can also be saved to disk using the ``save`` function by changing the file extension from ``.html``, which exports an interactive plot, ``.png``:
```python
hv.save(violin, 'violin.png')
```
## Element Style options
One of the major benefits of bokeh is that it was designed from the ground up with consistency in mind, therefore most style options are a combination of the fill, line, and text style options listed below:
```python
from holoviews.plotting.bokeh.styles import (line_properties, fill_properties, text_properties)
print("""
Line properties: %s\n
Fill properties: %s\n
Text properties: %s
""" % (line_properties, fill_properties, text_properties))
```
Note also that most of these options support vectorized style mapping as described in the [Style Mapping user guide](04-Style_Mapping.ipynb). Here's an example of HoloViews Elements using a Bokeh backend, with bokeh's style options:
```python
curve_opts = opts.Curve(line_width=10, line_color='indianred', line_dash='dotted', line_alpha=0.5)
point_opts = opts.Points(fill_color='#00AA00', fill_alpha=0.5, line_width=1, line_color='black', size=5)
text_opts = opts.Text(text_align='center', text_baseline='middle', text_color='gray', text_font='Arial')
xs = np.linspace(0, np.pi*4, 100)
data = (xs, np.sin(xs))
(hv.Curve(data) + hv.Points(data) + hv.Text(6, 0, 'Here is some text')).opts(
curve_opts, point_opts, text_opts)
```
Notice that because the first two plots use the same underlying data, they become linked, such that zooming or panning one of the plots makes the corresponding change on the other.
## Setting Backend Opts
HoloViews does not expose every single option from Bokeh.
Instead, HoloViews allow users to attach [hooks](Customizing_Plots.ipynb#plot-hooks) to modify the plot object directly--but writing these hooks could be cumbersome, especially if it's only used for a single line of update.
Fortunately, HoloViews allows `backend_opts` for the Bokeh backend to configure options by declaring a dictionary with accessor specification for updating the plot components.
For example, here's how to make the toolbar auto-hide.
```python
hv.Curve(data).opts(
backend_opts={"plot.toolbar.autohide": True}
)
```
The following is the equivalent, as a hook.
```python
def hook(hv_plot, element):
toolbar = hv_plot.handles['plot'].toolbar
toolbar.autohide = True
hv.Curve(data).opts(hooks=[hook])
```
Notice how much more concise it is with `backend_opts`!
With knowledge of the attributes of Bokeh, it's possible to configure many other plot components besides `toolbar`. Some examples include `legend`, `colorbar`, `xaxis`, `yaxis`, and much, much more.
If you're unsure, simply input your best guess and it'll try to provide a list of suggestions if there's an issue.
## Sizing Elements
In the bokeh backend the sizing of plots and specifically layouts of plots is determined in an inside-out or compositional manner. Each subplot can be sized independently and it will fill the allocated space. The sizing is determined by the combination of width, height, aspect and responsive options. In this section we will discover the different approaches to setting plot dimensions and aspects.
### Width and height
The most straightforward approach to specifying the size of a plot is using a width and height specified in pixels. This is the default behavior and makes it easy to achieve precise alignment between plots but does not allow for keeping a constant aspect or responsive resizing. In particular, the specified size includes the axes and any legends or colorbars.
```python
points_a = hv.Points(data)
points_b = hv.Points(data)
points_a.opts(width=300, height=300) + points_b.opts(width=600, height=300)
```
### Frame width and height
The frame width on the other hand provides precise control over the inner dimensions of a plot, it ensures the actual plot frame matches the specified dimensions exactly. This makes it possible to achieve a precise aspect ratio between the axis scales, without worrying about the size of axes, colorbars, titles and legends, e.g. below we can see two plots defined using explicit ``frame_width`` and ``frame_height`` share the same dimensions despite the fact that one has a colorbar.
```python
xs = ys = np.arange(10)
yy, xx = np.meshgrid(xs, ys)
zz = xx*yy
img = hv.Image(np.random.rand(100, 100))
points_a.opts(frame_width=200, frame_height=200) +\
img.opts(frame_width=200, frame_height=200, colorbar=True, axiswise=True)
```
### Aspect
The ``aspect`` and ``data_aspect`` options provide control over the scaling of the plot dimensions and the axis limits.
#### ``aspect``:
The ``aspect`` specifies the ratio between the width and height dimensions of the plot. If specified this options takes absolute precedence over the dimensions of the plot but has no effect on the plot's axis limits. It supports the following options:
* **``float``** : A numeric value will scale the ratio of plot width to plot height
* **``"equal"``** : Sets aspect of the axis scaling to be equal, equivalent to **``data_aspect=1``**
* **``"square"``** : Ensures the plot dimensions are square.
#### ``data_aspect``:
The ``data_aspect`` specifies the scaling between the x- and y-axis ranges. If specified this option will scale both the plot ranges and dimensions unless explicit ``aspect``, ``width`` or ``height`` value overrides the plot dimensions:
* **``float``** : Sets ratio between the units on the x-scale and the y-scale
```python
xs = np.linspace(0, 10)
ys = np.linspace(0, 5)
img = hv.Image((xs, ys, xs[:, np.newaxis]*np.sin(ys*4)))
(img.options(aspect='equal').relabel('aspect=\'equal\'') +
img.options(aspect='square', colorbar=True, frame_width=300).relabel('aspect=\'square\'') +
img.options(aspect=2).relabel('aspect=2') +
img.options(data_aspect=2, frame_width=300).relabel('data_aspect=2')).cols(2)
```
## Responsive
Since bokeh plots are rendered within a browser window which can be resized dynamically it supports responsive sizing modes allowing the plot to rescale when the window it is placed in is changed. If enabled, the behavior of ``responsive`` modes depends on whether an aspect or width/height option is set. Specifically responsive mode will only work if at least one dimension of the plot is left undefined, e.g. when width and height or width and aspect are set the plot is set to a fixed size, ignoring any ``responsive`` option. This leaves four different ``responsive`` modes:
* **``scale_both``**: If neither a width or a height are defined but a fixed aspect is defined both axes will be scaled up to the maximum size of the container. Scaling ensures that the aspect ratio of the plot is maintained.
* **``stretch_both``**: If neither a width, height or aspect are defined the plot will stretch to fill all available space.
* **``stretch_width``**: If a height but neither a width or aspect are defined the plot will stretch to fill all available horizontal space.
* **``stretch_height``**: If a width but neither a height or aspect are defined the plot will stretch to fill all available vertical space.
**Note**: In the notebook stretching and scaling the height does not increase the size of a cell.
As a simple example let us declare a plot that has a fixed height but stretches to fit all available horizontal space:
```python
hv.Points(data).opts(height=200, responsive=True, title='stretch width')
```
Similarly if we declare a fixed ``aspect`` or ``data_aspect`` responsive modes will try to fill all available space but avoid distorting the specified aspect:
```python
img.opts(data_aspect=0.5, responsive=True, title='scale both')
```
## Alignment
The alignment of a plot in a row or column can be controlled using the ``align`` option. It controls both the vertical alignment in a row and the horizontal alignment in a column and can be set to one of `'start'`, `'center'` or `'end'` (where `'start'` is the default).
#### Vertical
```python
points = hv.Points(data).opts(axiswise=True)
img = hv.Image((xs, ys, xs[:, np.newaxis]*np.sin(ys*4)))
img + points.opts(height=200, align='end')
```
#### Horizontal
```python
(img.opts(axiswise=True, width=200, align='center') + points).cols(1)
```
## Grid lines
Grid lines can be controlled through the combination of ``show_grid`` and ``gridstyle`` parameters. The ``gridstyle`` allows specifying a number of options including:
* ``grid_line_color``
* ``grid_line_alpha``
* ``grid_line_dash``
* ``grid_line_width``
* ``grid_bounds``
* ``grid_band``
These options may also be applied to minor grid lines by prepending the ``'minor_'`` prefix and may be applied to a specific axis by replacing ``'grid_`` with ``'xgrid_'`` or ``'ygrid_'``. Here we combine some of these options to generate a complex grid pattern:
```python
grid_style = {'grid_line_color': 'black', 'grid_line_width': 1.5, 'ygrid_bounds': (0.3, 0.7),
'minor_xgrid_line_color': 'lightgray', 'xgrid_line_dash': [4, 4]}
hv.Points(np.random.rand(10, 2)).opts(gridstyle=grid_style, show_grid=True, size=5, width=600)
```
## Containers
The bokeh plotting extension also supports a number of additional features relating to container components.
### Tabs
Using bokeh, both ``(Nd)Overlay`` and ``(Nd)Layout`` types may be displayed inside a ``tabs`` widget. This may be enabled via a plot option ``tabs``, and may even be nested inside a Layout.
```python
x,y = np.mgrid[-50:51, -50:51] * 0.1
img = hv.Image(np.sin(x**2+y**2), bounds=(-1,-1,1,1))
(img.relabel('Image') * img.sample(x=0).relabel('Cross-section')).opts(tabs=True)
```
Another reason to use ``tabs`` is that some Layout combinations may not be able to be displayed directly using HoloViews. For example, it is not currently possible to display a ``GridSpace`` as part of a ``Layout`` in any backend, and this combination will automatically switch to a ``tab`` representation for the bokeh backend.
### Interactive Legends
When using ``NdOverlay`` and ``Overlay`` containers each element will get a legend entry, which can be used to interactively toggle the visibility of the element. In this example we will create a number of ``Histogram`` elements each with a different mean. By setting a ``muted_fill_alpha`` we can define the style of the element when it is de-selected using the legend, simply try tapping on each legend entry to see the effect:
```python
hv.NdOverlay({i: hv.Histogram(np.histogram(np.random.randn(100)+i*2)) for i in range(5)}).opts(
'Histogram', width=600, alpha=0.8, muted_fill_alpha=0.1)
```
The other ``muted_`` options can be used to define other aspects of the Histogram style when it is unselected.
If you have multiple plots in a ``Layout`` with the same legend label, muting one of them will automatically mute all of them.
```python
overlay1 = hv.Curve([0, 0], label="A") * hv.Curve([1, 1], label="B")
overlay2 = hv.Curve([2, 2], label="A") * hv.Curve([3, 3], label="B")
layout = overlay1 + overlay2
layout
```
If you want to turn off this behavior, use ``.opts(sync_legends=False)``
```python
layout.opts(sync_legends=False)
```
If you want to control the number of legend shown in the ``Layout`` or the position of them ``show_legends`` and ``legend_position`` can be used.
```python
layout.opts(sync_legends=True, show_legends=0, legend_position="top_left")
```
### Marginals
The Bokeh backend also supports marginal plots to generate adjoined plots. The most convenient way to build an AdjointLayout is with the ``.hist()`` method.
```python
points = hv.Points(np.random.randn(500,2))
points.hist(num_bins=51, dimension=['x','y'])
```
When the histogram represents a quantity that is mapped to a value dimension with a corresponding colormap, it will automatically share the colormap, making it useful as a colorbar for that dimension as well as a histogram.
```python
img.hist(num_bins=100, dimension=['x', 'y'], weight_dimension='z', mean_weighted=True) +\
img.hist(dimension='z')
```
## Tools
Bokeh provides a range of tools to interact with a plot and HoloViews adds a number of tools by default but also makes it easy to add additional tools. The ``default_tools`` define the list of tools that are added automatically and usually a user would override only the ``tools`` option to add additional tools. By default the ``default_tools`` include:
['save', 'pan', 'wheel_zoom', 'box_zoom', 'reset']
#### Toolbar
The bokeh toolbar is added automatically and will be placed to the right for a single plot and on the top for a layout. Additionally for layouts of plots it will automatically merge the toolbars to avoid crowding the plot. However both behaviors can be customized, the toolbar can be hidden or moved to a different location on a plot by setting the ``toolbar`` option to one of:
['above', 'below', 'left', 'right', 'disable', None]
Secondly a layout or grid plot supports the ``merge_tools`` option which can be used to maintain one toolbar per plot:
```python
(hv.Curve([1, 2, 3]).opts(toolbar='above') + hv.Curve([1, 2, 3]).opts(toolbar=None)).opts(merge_tools=False)
```
#### Hover tools
Some Elements allow revealing additional data by hovering over the data. To enable the hover tool, simply supply ``'hover'`` as a list to the ``tools`` plot option. By default the tool will display information for all the dimensions specified on the element:
```python
error = np.random.rand(100, 3)
heatmap_data = {(chr(65+i), chr(97+j)):i*j for i in range(5) for j in range(5) if i!=j}
data = [np.random.normal() for i in range(10000)]
hist = np.histogram(data, 20)
points = hv.Points(error)
heatmap = hv.HeatMap(heatmap_data).sort()
histogram = hv.Histogram(hist)
image = hv.Image(np.random.rand(50,50))
(points + heatmap + histogram + image).opts(
opts.Points(tools=['hover'], size=5), opts.HeatMap(tools=['hover']),
opts.Image(tools=['hover']), opts.Histogram(tools=['hover']),
opts.Layout(shared_axes=False)).cols(2)
```
Additionally, you can provide `'vline'`, the equivalent of passing `HoverTool(mode='vline')`, or `'hline'` to set the hit-testing behavior
```python
error = np.random.rand(100, 3)
heatmap_data = {(chr(65+i), chr(97+j)):i*j for i in range(5) for j in range(5) if i!=j}
data = [np.random.normal() for i in range(10000)]
hist = np.histogram(data, 20)
points = hv.Points(error)
heatmap = hv.HeatMap(heatmap_data).sort()
histogram = hv.Histogram(hist)
image = hv.Image(np.random.rand(50,50))
(points + heatmap + histogram + image).opts(
opts.Points(tools=['hline'], size=5), opts.HeatMap(tools=['hover']),
opts.Image(tools=['vline']), opts.Histogram(tools=['hover']),
opts.Layout(shared_axes=False)).cols(2)
```
It is also possible to explicitly declare the columns to display by manually constructing a `HoverTool` and declaring the tooltips as a list of tuples of the labels and a specification of the dimension name and how to display it (for a complete reference see the [bokeh user guide](https://bokeh.pydata.org/en/latest/docs/user_guide/tools.html#hovertool)).
```python
from bokeh.models import HoverTool
from bokeh.sampledata.periodic_table import elements
points = hv.Points(
elements, ['electronegativity', 'density'],
['name', 'symbol', 'metal', 'CPK', 'atomic radius']
).sort('metal')
tooltips = [
('Name', '@name'),
('Symbol', '@symbol'),
('CPK', '$color[hex, swatch]:CPK')
]
hover = HoverTool(tooltips=tooltips)
points.opts(
tools=[hover], color='metal', cmap='Category20',
line_color='black', size=dim('atomic radius')/10,
width=600, height=400, show_grid=True,
title='Chemical Elements by Type (scaled by atomic radius)')
```
#### Selection tools
Bokeh provides a number of tools for selecting data points including ``tap``, ``box_select``, ``lasso_select`` and ``poly_select``. To distinguish between selected and unselected data points we can also control the color and alpha of the ``selection`` and ``nonselection`` points. You can try out any of these selection tools and see how the plot is affected:
```python
hv.Points(error).opts(
color='blue', nonselection_color='red', size=10, tools=['box_select', 'lasso_select', 'tap'])
```
#### Selection tool with shared axes and linked brushing
When dealing with complex multi-variate data it is often useful to explore interactions between variables across plots. HoloViews will automatically link the data sources of plots in a Layout if they draw from the same data, allowing for both linked axes and brushing.
We'll see what this looks like in practice using a small dataset of macro-economic data:
```python
macro_df = pd.read_csv('http://assets.holoviews.org/macro.csv', sep='\t')
```
By creating two ``Points`` Elements, which both draw their data from the same pandas DataFrame, the two plots become automatically linked. Note that the [Linking Plots user guide](Linking_Plots.ipynb) provides a more explicit way to declare two elements as being linked without having to share the same underlying datastructure. The automated linking behavior can be toggled with the ``shared_datasource`` plot option on a ``Layout`` or ``GridSpace``. You can try selecting data in one plot, and see how the corresponding data (those on the same rows of the DataFrame, even if the plots show different data, will be highlighted in each.
```python
(hv.Scatter(macro_df, 'year', 'gdp') + hv.Scatter(macro_df, 'gdp', 'unem')).opts(
opts.Scatter(tools=['box_select', 'lasso_select']), opts.Layout(shared_axes=True, shared_datasource=True))
```
A gridmatrix is a clear use case for linked plotting. This operation plots any combination of numeric variables against each other, in a grid, and selecting datapoints in any plot will highlight them in all of them. Such linking can thus reveal how values in a particular range (e.g. very large outliers along one dimension) relate to each of the other dimensions.
```python
table = hv.Dataset(macro_df, kdims=['year', 'country'])
matrix = hv.operation.gridmatrix(table.groupby('country'))
matrix.select(country=['West Germany', 'United Kingdom', 'United States']).opts(
opts.Scatter(tools=['box_select', 'lasso_select', 'hover'], border=0))
```
#### Drawing Tools
Another commonly useful set of tools are the drawing tools which are integrated with the linked streams introduced in the [Custom Interactivity guide](13-Custom_Interactivity.ipynb). These tools allow drawing and annotating a plot and accessing the annotation back in Python. The available drawing tools include:
* [PointDraw](../reference/streams/bokeh/PointDraw.ipynb): The ``PointDraw`` stream adds a bokeh tool to the source plot, which allows drawing, dragging and deleting points.
* [BoxEdit](../reference/streams/bokeh/BoxEdit.ipynb): The ``BoxEdit`` stream adds a bokeh tool to the source plot, which allows drawing, dragging and deleting boxes.
* [FreehandDraw](../reference/streams/bokeh/FreehandDraw.ipynb): The ``FreehandDraw`` stream adds a bokeh tool to the source plot, which allows freehand drawing on the plot canvas
* [PolyDraw](../reference/streams/bokeh/PolyDraw.ipynb): The ``PolyDraw`` stream adds a bokeh tool to the source plot, which allows drawing, dragging and deleting polygons and paths.
* [PolyEdit](../reference/streams/bokeh/PolyEdit.ipynb): The ``PolyEdit`` stream adds a bokeh tool to the source plot, which allows drawing, dragging and deleting vertices on polygons and paths.
Each of the reference notebooks explains the tools in more detail but to get an of how these tools work see the ``FreehandDraw`` example below, which allows drawing on the canvas and accessing the drawn data from Python:
```python
path = hv.Path([])
freehand = hv.streams.FreehandDraw(source=path, num_objects=3)
path.opts(
opts.Path(active_tools=['freehand_draw'], height=400, line_width=10, width=400))
```
To access the data from Python, you can access the ``element`` property on the stream, which lets us access each drawn line drawn as a separate ``Path`` element:
```python
freehand.element.split()
```
The [Reference Gallery](http://holoviews.org/reference/index.html) shows examples of all the Elements supported for Bokeh, in a format that can be compared with the corresponding matplotlib versions.
## Theming
Bokeh supports theming via the [Theme object](https://bokeh.pydata.org/en/latest/docs/reference/themes.html) object which can also be using in HoloViews. Applying a Bokeh theme is useful when you need to set detailed aesthetic options not directly exposed via the HoloViews style options.
To apply a Bokeh theme, you will need to create a ``Theme`` object:
```python
from bokeh.themes.theme import Theme
theme = Theme(
json={
'attrs' : {
'Figure' : {
'background_fill_color': '#2F2F2F',
'border_fill_color': '#2F2F2F',
'outline_line_color': '#444444',
},
'Grid': {
'grid_line_dash': [6, 4],
'grid_line_alpha': .3,
},
'Axis': {
'major_label_text_color': 'white',
'axis_label_text_color': 'white',
'major_tick_line_color': 'white',
'minor_tick_line_color': 'white',
'axis_line_color': "white"
}
}
})
```
Instead of supplying a JSON object, you can also create a Bokeh ``Theme`` object from a [YAML file](https://bokeh.pydata.org/en/latest/docs/reference/themes.html). Once the ``Theme`` object is created, you can apply it by setting it on the ``theme`` parameter of the current Bokeh renderer:
```python
hv.renderer('bokeh').theme = theme
```
The theme will then be applied to subsequent plots:
```python
xs = np.linspace(0, np.pi*4, 100)
hv.Curve((xs, np.sin(xs)), label='foo').opts(bgcolor='grey')
```
You may also supply a name from Bokeh's built-in-themes:
```python
hv.renderer('bokeh').theme = 'light_minimal'
xs = np.linspace(0, np.pi*4, 100)
hv.Curve((xs, np.sin(xs)), label='foo')
```
To disable theming, you can set the ``theme`` parameter on the Bokeh renderer to ``None``.
|