File size: 9,151 Bytes
d90acf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import math

import torch
from einops import rearrange
from tqdm import tqdm

from .utils import get_tensor_items


def get_named_beta_schedule(schedule_name, timesteps):
    if schedule_name == "linear":
        scale = 1000 / timesteps
        beta_start = scale * 0.0001
        beta_end = scale * 0.02
        return torch.linspace(
            beta_start, beta_end, timesteps, dtype=torch.float32
        )
    elif schedule_name == "cosine":
        alpha_bar = lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
        betas = []
        for i in range(timesteps):
            t1 = i / timesteps
            t2 = (i + 1) / timesteps
            betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), 0.999))
        return torch.tensor(betas, dtype=torch.float32)


class BaseDiffusion:

    def __init__(self, betas, percentile=None, gen_noise=torch.randn_like):
        self.betas = betas
        self.num_timesteps = betas.shape[0]

        alphas = 1. - betas
        self.alphas_cumprod = torch.cumprod(alphas, dim=0)
        self.alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=betas.dtype), self.alphas_cumprod[:-1]])

        # calculate q(x_t | x_{t-1})
        self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
        self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - self.alphas_cumprod)

        # calculate q(x_{t-1} | x_t, x_0)
        self.posterior_mean_coef_1 = torch.sqrt(self.alphas_cumprod_prev) * betas / (1. - self.alphas_cumprod)
        self.posterior_mean_coef_2 = torch.sqrt(alphas) * (1. - self.alphas_cumprod_prev) / (1. - self.alphas_cumprod)
        self.posterior_variance = betas * (1. - self.alphas_cumprod_prev) / (1. - self.alphas_cumprod)
        self.posterior_log_variance = torch.log(
            torch.cat([self.posterior_variance[1].unsqueeze(0), self.posterior_variance[1:]])
        )

        self.percentile = percentile
        self.time_scale = 1000 // self.num_timesteps
        self.gen_noise = gen_noise
        self.jump_length = 3

    def process_x_start(self, x_start):
        bs, ndims = x_start.shape[0], len(x_start.shape[1:])
        if self.percentile is not None:
            quantile = torch.quantile(
                rearrange(x_start, 'b ... -> b (...)').abs(),
                self.percentile,
                dim=-1
            )
            quantile = torch.clip(quantile, min=1.)
            quantile = quantile.reshape(bs, *((1,) * ndims))
            return torch.clip(x_start, -quantile, quantile) / quantile
        else:
            return torch.clip(x_start, -1., 1.)

    def get_x_start(self, x, t, noise):
        sqrt_one_minus_alphas_cumprod = get_tensor_items(self.sqrt_one_minus_alphas_cumprod, t, noise.shape)
        sqrt_alphas_cumprod = get_tensor_items(self.sqrt_alphas_cumprod, t, noise.shape)
        pred_x_start = (x - sqrt_one_minus_alphas_cumprod * noise) / sqrt_alphas_cumprod
        return pred_x_start

    def get_noise(self, x, t, x_start):
        sqrt_one_minus_alphas_cumprod = get_tensor_items(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
        sqrt_alphas_cumprod = get_tensor_items(self.sqrt_alphas_cumprod, t, x_start.shape)
        pred_noise = (x - sqrt_alphas_cumprod * x_start) / sqrt_one_minus_alphas_cumprod
        return pred_noise

    def q_sample(self, x_start, t, noise=None):
        if noise is None:
            noise = self.gen_noise(x_start)
        sqrt_alphas_cumprod = get_tensor_items(self.sqrt_alphas_cumprod, t, x_start.shape)
        sqrt_one_minus_alphas_cumprod = get_tensor_items(self.sqrt_one_minus_alphas_cumprod, t, noise.shape)
        x_t = sqrt_alphas_cumprod * x_start + sqrt_one_minus_alphas_cumprod * noise
        return x_t

    def q_posterior_mean_variance(self, x_start, x_t, t):
        posterior_mean_coef_1 = get_tensor_items(self.posterior_mean_coef_1, t, x_start.shape)
        posterior_mean_coef_2 = get_tensor_items(self.posterior_mean_coef_2, t, x_t.shape)
        posterior_mean = posterior_mean_coef_1 * x_start + posterior_mean_coef_2 * x_t

        posterior_variance = get_tensor_items(self.posterior_variance, t, x_start.shape)
        posterior_log_variance = get_tensor_items(self.posterior_log_variance, t, x_start.shape)
        return posterior_mean, posterior_variance, posterior_log_variance

    def q_posterior_variance(self, t, prev_t, shape, eta=1., ):
        alphas_cumprod = get_tensor_items(self.alphas_cumprod, t, shape)
        prev_alphas_cumprod = get_tensor_items(self.alphas_cumprod, prev_t, shape)

        posterior_variance = torch.sqrt(
            eta * (1. - alphas_cumprod / prev_alphas_cumprod) * (1. - prev_alphas_cumprod) / (1. - alphas_cumprod)
        )
        return posterior_variance

    def text_guidance(
            self, model, x, t, context, context_mask, null_embedding, guidance_weight_text,
            uncondition_context=None, uncondition_context_mask=None, mask=None, masked_latent=None
    ):
        large_x = x.repeat(2, 1, 1, 1)
        large_t = t.repeat(2).to(x.dtype)

        if uncondition_context is None:
            uncondition_context = torch.zeros_like(context)
            uncondition_context_mask = torch.zeros_like(context_mask)
            uncondition_context[:, 0] = null_embedding
            uncondition_context_mask[:, 0] = 1
        large_context = torch.cat([context, uncondition_context])
        large_context_mask = torch.cat([context_mask, uncondition_context_mask])

        if mask is not None:
            mask = mask.repeat(2, 1, 1, 1)
        if masked_latent is not None:
            masked_latent = masked_latent.repeat(2, 1, 1, 1)

        if model.in_layer.in_channels == 9:
            large_x = torch.cat([large_x, mask, masked_latent], dim=1)

        pred_large_noise = model(large_x, large_t * self.time_scale, large_context, large_context_mask.bool())
        pred_noise, uncond_pred_noise = torch.chunk(pred_large_noise, 2)
        pred_noise = (guidance_weight_text + 1.) * pred_noise - guidance_weight_text * uncond_pred_noise
        return pred_noise

    def p_mean_variance(
            self, model, x, t, prev_t, context, context_mask, null_embedding, guidance_weight_text, eta=1.,
            negative_context=None, negative_context_mask=None, mask=None, masked_latent=None
    ):

        pred_noise = self.text_guidance(
            model, x, t, context, context_mask, null_embedding, guidance_weight_text,
            negative_context, negative_context_mask, mask, masked_latent
        )

        pred_x_start = self.get_x_start(x, t, pred_noise)
        pred_x_start = self.process_x_start(pred_x_start)
        pred_noise = self.get_noise(x, t, pred_x_start)
        pred_var = self.q_posterior_variance(t, prev_t, x.shape, eta)

        prev_alphas_cumprod = get_tensor_items(self.alphas_cumprod, prev_t, x.shape)
        pred_mean = torch.sqrt(prev_alphas_cumprod) * pred_x_start
        pred_mean += torch.sqrt(1. - prev_alphas_cumprod - pred_var ** 2) * pred_noise
        return pred_mean, pred_var

    @torch.no_grad()
    def p_sample(
            self, model, x, t, prev_t, context, context_mask, null_embedding, guidance_weight_text, eta=1.,
            negative_context=None, negative_context_mask=None, mask=None, masked_latent=None
    ):
        bs = x.shape[0]
        ndims = len(x.shape[1:])
        pred_mean, pred_var = self.p_mean_variance(
            model, x, t, prev_t, context, context_mask, null_embedding, guidance_weight_text, eta,
            negative_context=negative_context, negative_context_mask=negative_context_mask,
            mask=mask, masked_latent=masked_latent
        )
        noise = torch.randn_like(x)
        mask = (prev_t != 0).reshape(bs, *((1,) * ndims))
        sample = pred_mean + mask * pred_var * noise
        return sample

    @torch.no_grad()
    def p_sample_loop(
            self, model, shape, times, device, context, context_mask, null_embedding, guidance_weight_text, eta=1.,
            negative_context=None, negative_context_mask=None, mask=None, masked_latent=None, gan=False,
    ):
        img = torch.randn(*shape, device=device)
        times = times + [0, ]
        times = list(zip(times[:-1], times[1:]))

        for time, prev_time in tqdm(times):
            time = torch.tensor([time] * shape[0], device=device)
            if gan:
                x_t = self.q_sample(img, time)
                pred_noise = model(x_t, time.type(x_t.dtype), context, context_mask.bool())
                img = self.get_x_start(x_t, time, pred_noise)
            else:
                prev_time = torch.tensor([prev_time] * shape[0], device=device)
                img = self.p_sample(
                    model, img, time, prev_time, context, context_mask, null_embedding, guidance_weight_text, eta,
                    negative_context=negative_context, negative_context_mask=negative_context_mask,
                    mask=mask, masked_latent=masked_latent
                )
        return img


def get_diffusion(conf):
    betas = get_named_beta_schedule(**conf.schedule_params)
    base_diffusion = BaseDiffusion(betas, **conf.diffusion_params)
    return base_diffusion