nesterus commited on
Commit
d90acf0
1 Parent(s): 12c887a

moved contents of presentations repo

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Kandinsky-3/.gitignore +160 -0
  2. Kandinsky-3/LICENSE +201 -0
  3. Kandinsky-3/README.md +230 -0
  4. Kandinsky-3/exact_requirements.txt +372 -0
  5. Kandinsky-3/kandinsky3/__init__.py +267 -0
  6. Kandinsky-3/kandinsky3/condition_encoders.py +40 -0
  7. Kandinsky-3/kandinsky3/condition_processors.py +34 -0
  8. Kandinsky-3/kandinsky3/inpainting_pipeline.py +168 -0
  9. Kandinsky-3/kandinsky3/model/__init__.py +0 -0
  10. Kandinsky-3/kandinsky3/model/diffusion.py +200 -0
  11. Kandinsky-3/kandinsky3/model/nn.py +84 -0
  12. Kandinsky-3/kandinsky3/model/unet.py +516 -0
  13. Kandinsky-3/kandinsky3/model/utils.py +62 -0
  14. Kandinsky-3/kandinsky3/movq.py +431 -0
  15. Kandinsky-3/kandinsky3/setup.py +38 -0
  16. Kandinsky-3/kandinsky3/t2i_pipeline.py +106 -0
  17. Kandinsky-3/kandinsky3/utils.py +71 -0
  18. Kandinsky-3/requirements.txt +23 -0
  19. LICENSE +21 -0
  20. README.md +135 -11
  21. app.py +92 -4
  22. fonts/Arial.ttf +0 -0
  23. fonts/ArialBd.ttf +0 -0
  24. fonts/ArialBdIt.ttf +0 -0
  25. fonts/ArialIt.ttf +0 -0
  26. fonts/ComicSansMS.ttf +0 -0
  27. fonts/ComicSansMSBd.ttf +0 -0
  28. fonts/CourierNew.ttf +0 -0
  29. fonts/Georgia.ttf +0 -0
  30. fonts/GeorgiaBd.ttf +0 -0
  31. fonts/GeorgiaBdIt.ttf +0 -0
  32. fonts/GeorgiaIt.ttf +0 -0
  33. fonts/Helvetica.ttf +0 -0
  34. fonts/HelveticaBd.ttf +0 -0
  35. fonts/HelveticaNeue.ttf +0 -0
  36. fonts/HelveticaNeueBd.ttf +0 -0
  37. fonts/LucidaSansUnicode.ttf +0 -0
  38. fonts/README +28 -0
  39. fonts/Tahoma.ttf +0 -0
  40. fonts/TahomaBd.ttf +0 -0
  41. fonts/TimesNewRoman.ttf +0 -0
  42. fonts/TimesNewRomanBd.ttf +0 -0
  43. fonts/TimesNewRomanBdIt.ttf +0 -0
  44. fonts/TimesNewRomanIt.ttf +0 -0
  45. fonts/TrebuchetMS.ttf +0 -0
  46. fonts/TrebuchetMSBd.ttf +0 -0
  47. fonts/TrebuchetMSBdIt.ttf +0 -0
  48. fonts/TrebuchetMSIt.ttf +0 -0
  49. fonts/Verdana.ttf +0 -0
  50. fonts/VerdanaBd.ttf +0 -0
Kandinsky-3/.gitignore ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
Kandinsky-3/LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
Kandinsky-3/README.md ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Kandinsky-3: Text-to-image diffusion model
2
+
3
+ ![](assets/title.jpg)
4
+
5
+ [Kandinsky 3.0 Post](https://habr.com/ru/companies/sberbank/articles/775590/) | [Kandinsky 3.1 Post](https://habr.com/ru/companies/sberbank/articles/805337/) | [Project Page](https://ai-forever.github.io/Kandinsky-3) | [Generate](https://fusionbrain.ai) | [Telegram-bot](https://t.me/kandinsky21_bot) | [Technical Report](https://arxiv.org/pdf/2312.03511.pdf) | [HuggingFace](https://huggingface.co/kandinsky-community/kandinsky-3) |
6
+
7
+ # Kandinsky 3.1:
8
+
9
+ ## Description:
10
+
11
+ We present Kandinsky 3.1, the follow-up to the Kandinsky 3.0 model, a large-scale text-to-image generation model based on latent diffusion, continuing the series of text-to-image Kandinsky models and reflecting our progress to achieve higher quality and realism of image generation, which we have enhanced and enriched with a variety of useful features and modes to give users more opportunities to fully utilise the power of our new model.
12
+
13
+ ## Kandinsky Flash (Kandinsky 3.0 Refiner)
14
+
15
+ <figure>
16
+ <img src="assets/butterly_effect.jpg">
17
+ </figure>
18
+
19
+
20
+ Diffusion models have problems with fast image generation. To address this problem, we trained a Kandinksy Flash model based on the [Adversarial Diffusion Distillation](https://arxiv.org/abs/2311.17042) approach with some modifications: we trained the model on latents, which reduced the memory overhead and removed distillation loss as it did not affect the training. Also, we applied Kandinsky Flash model to images generated from Kandinsky 3.0 to improve visual quality of generated images.
21
+
22
+ ### Architecture
23
+
24
+ For training Kandinsky Flash we used the following architecture of discriminator. It is the half of Kandinsky 3.0 U-Net encoder with additional head predictions.
25
+
26
+ <img src="assets/architecture.png">
27
+
28
+ ### How to use:
29
+ Check our jupyter notebooks with examples in `./examples` folder
30
+
31
+ ```python
32
+ from kandinsky3 import get_T2I_Flash_pipeline
33
+
34
+ device_map = torch.device('cuda:0')
35
+ dtype_map = {
36
+ 'unet': torch.float32,
37
+ 'text_encoder': torch.float16,
38
+ 'movq': torch.float32,
39
+ }
40
+
41
+ t2i_pipe = get_T2I_Flash_pipeline(
42
+ device_map, dtype_map
43
+ )
44
+
45
+ res = t2i_pipe("A cute corgi lives in a house made out of sushi.")
46
+ ```
47
+ ### Kandinsky Inpainting
48
+
49
+ Also, we released a newer version of inpainting model, which we additionally trained the model on the object detection dataset. This allowed to get more stable generation of objects. The new weights are available at [ai-forever/Kandinsky3.1](https://huggingface.co/ai-forever/Kandinsky3.1). Check the usage [example](https://github.com/ai-forever/Kandinsky-3?tab=readme-ov-file#2-inpainting).
50
+
51
+
52
+ ## Prompt beautification
53
+
54
+ <figure>
55
+ <img src="assets/prompt_beautifcation.png">
56
+ </figure>
57
+
58
+
59
+ Prompt plays crucial role in text-to-image generation. So, in Kandinsky 3.1 we decided to use language model for making prompt better. We used Intel's [neural-chat-7b-v3-1](https://huggingface.co/Intel/neural-chat-7b-v3-1) with the following system prompt as the LLM:
60
+
61
+ ```
62
+ ### System: You are a prompt engineer. Your mission is to expand prompts written by user. You should provide the best prompt for text to image generation in English.
63
+ ### User:
64
+ {prompt}
65
+ ### Assistant:
66
+ {answer of the model}
67
+ ```
68
+
69
+ ## KandiSuperRes
70
+
71
+ <figure>
72
+ <img src="assets/superres.png">
73
+ </figure>
74
+
75
+ To learn more about KandiSuperRes, please checkout: https://github.com/ai-forever/KandiSuperRes/
76
+
77
+ ## Kandinsky IP-Adapter & Kandinsky ControlNet
78
+
79
+ <figure>
80
+ <img src="assets/ip-adapter.png">
81
+ </figure>
82
+
83
+ To allow using image as condition in Kandinsky model, we trained IP-Adapter and HED-based ControlNet model. For more details please check out: https://github.com/ai-forever/kandinsky3-diffusers
84
+
85
+ # Kandinsky 3.0:
86
+
87
+ ## Description:
88
+
89
+ Kandinsky 3.0 is an open-source text-to-image diffusion model built upon the Kandinsky2-x model family. In comparison to its predecessors, Kandinsky 3.0 incorporates more data and specifically related to Russian culture, which allows to generate pictures related to Russin culture. Furthermore, enhancements have been made to the text understanding and visual quality of the model, achieved by increasing the size of the text encoder and Diffusion U-Net models, respectively.
90
+
91
+ For more information: details of training, example of generations check out our [post](). The english version will be released in a couple of days.
92
+
93
+ ## Architecture details:
94
+
95
+
96
+ ![](assets/kandinsky.jpg)
97
+
98
+
99
+ Architecture consists of three parts:
100
+
101
+ + Text encoder Flan-UL2 (encoder part) - 8.6B
102
+ + Latent Diffusion U-Net - 3B
103
+ + MoVQ encoder/decoder - 267M
104
+
105
+
106
+ ## Models
107
+
108
+ We release our two models:
109
+
110
+ + [Base](): Base text-to-image diffusion model. This model was trained over 2M steps on 400 A100
111
+ + [Inpainting](): Inpainting version of the model. The model was initialized from final checkpoint of base model and trained 250k steps on 300 A100.
112
+
113
+ ## Installing
114
+
115
+ To install repo first one need to create conda environment:
116
+
117
+ ```
118
+ conda create -n kandinsky -y python=3.8;
119
+ source activate kandinsky;
120
+ pip install torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu113/torch_stable.html;
121
+ pip install -r requirements.txt;
122
+ ```
123
+ The exact dependencies is got using `pip freeze` and can be found in `exact_requirements.txt`
124
+
125
+ ## How to use:
126
+
127
+ Check our jupyter notebooks with examples in `./examples` folder
128
+
129
+ ### 1. text2image
130
+
131
+ ```python
132
+ import sys
133
+ sys.path.append('..')
134
+
135
+ import torch
136
+ from kandinsky3 import get_T2I_pipeline
137
+
138
+ device_map = torch.device('cuda:0')
139
+ dtype_map = {
140
+ 'unet': torch.float32,
141
+ 'text_encoder': torch.float16,
142
+ 'movq': torch.float32,
143
+ }
144
+
145
+ t2i_pipe = get_T2I_pipeline(
146
+ device_map, dtype_map,
147
+ )
148
+ res = t2i_pipe("A cute corgi lives in a house made out of sushi.")
149
+
150
+ res[0]
151
+ ```
152
+
153
+ ### 2. inpainting
154
+
155
+ ```python
156
+ from kandinsky3 import get_inpainting_pipeline
157
+
158
+ device_map = torch.device('cuda:0')
159
+ dtype_map = {
160
+ 'unet': torch.float16,
161
+ 'text_encoder': torch.float16,
162
+ 'movq': torch.float32,
163
+ }
164
+
165
+ pipe = get_inpainting_pipeline(
166
+ device_map, dtype_map,
167
+ )
168
+
169
+ image = ... # PIL Image
170
+ mask = ... # Numpy array (HxW). Set 1 where image should be masked
171
+ image = inp_pipe( "A cute corgi lives in a house made out of sushi.", image, mask)
172
+ ```
173
+
174
+ ## Examples of generations
175
+
176
+ <hr>
177
+
178
+ <table class="center">
179
+ <tr>
180
+ <td><img src="assets/photo_8.jpg" raw=true></td>
181
+ <td><img src="assets/photo_15.jpg"></td>
182
+ <td><img src="assets/photo_16.jpg"></td>
183
+ <td><img src="assets/photo_17.jpg"></td>
184
+ </tr>
185
+ <tr>
186
+ <td width=25% align="center">"A beautiful landscape outdoors scene in the crochet knitting art style, drawing in style by Alfons Mucha"</td>
187
+ <td width=25% align="center">"gorgeous phoenix, cosmic, darkness, epic, cinematic, moonlight, stars, high - definition, texture,Oscar-Claude Monet"</td>
188
+ <td width=25% align="center">"a yellow house at the edge of the danish fjord, in the style of eiko ojala, ingrid baars, ad posters, mountainous vistas, george ault, realistic details, dark white and dark gray, 4k"</td>
189
+ <td width=25% align="center">"dragon fruit head, upper body, realistic, illustration by Joshua Hoffine Norman Rockwell, scary, creepy, biohacking, futurism, Zaha Hadid style"</td>
190
+ </tr>
191
+ <tr>
192
+ <td><img src="assets/photo_2.jpg" raw=true></td>
193
+ <td><img src="assets/photo_19.jpg"></td>
194
+ <td><img src="assets/photo_13.jpg"></td>
195
+ <td><img src="assets/photo_14.jpg"></td>
196
+ </tr>
197
+ <tr>
198
+ <td width=25% align="center">"Amazing playful nice cute strawberry character, dynamic poze, surreal fantazy garden background, gorgeous masterpice, award winning photo, soft natural lighting, 3d, Blender, Octane render, tilt - shift, deep field, colorful, I can't believe how beautiful this is, colorful, cute and sweet baby - loved photo"</td>
199
+ <td width=25% align="center">"beautiful fairy-tale desert, in the sky a wave of sand merges with the milky way, stars, cosmism, digital art, 8k"</td>
200
+ <td width=25% align="center">"Car, mustang, movie, person, poster, car cover, person, in the style of alessandro gottardo, gold and cyan, gerald harvey jones, reflections, highly detailed illustrations, industrial urban scenes""</td>
201
+ <td width=25% align="center">"cloud in blue sky, a red lip, collage art, shuji terayama, dreamy objects, surreal, criterion collection, showa era, intricate details, mirror"</td>
202
+ </tr>
203
+
204
+ </table>
205
+
206
+ <hr>
207
+
208
+ ## Authors
209
+
210
+ + Vladimir Arkhipkin: [Github](https://github.com/oriBetelgeuse)
211
+ + Anastasia Maltseva [Github](https://github.com/NastyaMittseva)
212
+ + Andrei Filatov [Github](https://github.com/anvilarth),
213
+ + Igor Pavlov: [Github](https://github.com/boomb0om)
214
+ + Julia Agafonova
215
+ + Arseniy Shakhmatov: [Github](https://github.com/cene555), [Blog](https://t.me/gradientdip)
216
+ + Andrey Kuznetsov: [Github](https://github.com/kuznetsoffandrey), [Blog](https://t.me/complete_ai)
217
+ + Denis Dimitrov: [Github](https://github.com/denndimitrov), [Blog](https://t.me/dendi_math_ai)
218
+
219
+ ## Citation
220
+ ```
221
+ @misc{arkhipkin2023kandinsky,
222
+ title={Kandinsky 3.0 Technical Report},
223
+ author={Vladimir Arkhipkin and Andrei Filatov and Viacheslav Vasilev and Anastasia Maltseva and Said Azizov and Igor Pavlov and Julia Agafonova and Andrey Kuznetsov and Denis Dimitrov},
224
+ year={2023},
225
+ eprint={2312.03511},
226
+ archivePrefix={arXiv},
227
+ primaryClass={cs.CV}
228
+ }
229
+ ```
230
+
Kandinsky-3/exact_requirements.txt ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ absl-py==1.0.0
2
+ accelerate==0.20.3
3
+ adal==1.2.7
4
+ addict==2.4.0
5
+ aioboto3==11.0.1
6
+ aiobotocore==2.4.2
7
+ aiofiles==23.2.1
8
+ aiohttp==3.8.1
9
+ aiohttp-cors==0.7.0
10
+ aioitertools==0.11.0
11
+ aioredis==1.3.1
12
+ aiosignal==1.2.0
13
+ albumentations==1.3.1
14
+ alembic==1.4.1
15
+ alt-profanity-check==1.0.1
16
+ altair==5.0.1
17
+ antlr4-python3-runtime==4.9.3
18
+ anyio==3.5.0
19
+ apex==0.1
20
+ appdirs==1.4.4
21
+ argon2-cffi==21.3.0
22
+ argon2-cffi-bindings==21.2.0
23
+ asgiref==3.4.1
24
+ astunparse==1.6.3
25
+ async-timeout==4.0.2
26
+ asyncpool==1.0
27
+ asynctest==0.13.0
28
+ attrs==21.4.0
29
+ audioread==2.1.9
30
+ autopage==0.4.0
31
+ avro==1.11.0
32
+ awscli==1.22.38
33
+ azure-common==1.1.27
34
+ azure-storage-blob==2.1.0
35
+ azure-storage-common==2.1.0
36
+ Babel==2.9.1
37
+ backcall==0.2.0
38
+ basicsr==1.4.2
39
+ beautifulsoup4 @ file:///home/conda/feedstock_root/build_artifacts/beautifulsoup4_1631087867185/work
40
+ bezier==2021.2.12
41
+ bitarray==2.8.3
42
+ bitmath==1.3.3.1
43
+ bleach==4.1.0
44
+ blessings==1.7
45
+ blis==0.7.11
46
+ bokeh==2.4.2
47
+ boto3==1.24.59
48
+ botocore==1.27.59
49
+ braceexpand==0.1.7
50
+ brotlipy @ file:///home/conda/feedstock_root/build_artifacts/brotlipy_1636012184244/work
51
+ cached-property==1.5.2
52
+ cachetools==4.2.4
53
+ catalogue==2.0.10
54
+ certifi==2021.10.8
55
+ cffi==1.15.0
56
+ chardet @ file:///home/conda/feedstock_root/build_artifacts/chardet_1635814832679/work
57
+ charset-normalizer==2.0.10
58
+ click==8.0.3
59
+ cliff==3.10.0
60
+ clip @ git+https://github.com/openai/CLIP.git@a1d071733d7111c9c014f024669f959182114e33
61
+ cloudevents==1.2.0
62
+ cloudpathlib==0.16.0
63
+ cloudpickle==2.0.0
64
+ cmaes==0.8.2
65
+ cmake==3.27.7
66
+ cmd2==2.3.3
67
+ colorama==0.4.3
68
+ colorful==0.5.4
69
+ colorlog==6.6.0
70
+ conda==4.11.0
71
+ conda-build==3.21.7
72
+ conda-package-handling @ file:///home/conda/feedstock_root/build_artifacts/conda-package-handling_1636021712360/work
73
+ confection==0.1.3
74
+ configparser==5.2.0
75
+ cryptography @ file:///tmp/build/80754af9/cryptography_1639414570729/work
76
+ cycler==0.11.0
77
+ cymem==2.0.8
78
+ Cython==0.29.26
79
+ dask==2022.1.0
80
+ databricks-cli==0.16.2
81
+ datasets==2.13.2
82
+ DAWG-Python==0.7.2
83
+ debugpy==1.5.1
84
+ decorator==5.1.1
85
+ deep-translator==1.11.4
86
+ defusedxml==0.7.1
87
+ Deprecated==1.2.13
88
+ deprecation==2.1.0
89
+ diffusers==0.21.4
90
+ dill==0.3.6
91
+ distributed==2022.1.0
92
+ docker==5.0.3
93
+ docker-pycreds==0.4.0
94
+ docopt==0.6.2
95
+ docutils==0.15.2
96
+ einops==0.6.1
97
+ entrypoints==0.3
98
+ fairscale==0.4.6
99
+ fairseq==0.12.2
100
+ fastapi==0.72.0
101
+ fastBPE==0.1.0
102
+ fasttext==0.9.2
103
+ fasttext-langdetect==1.0.5
104
+ ffmpy==0.3.1
105
+ filelock @ file:///home/conda/feedstock_root/build_artifacts/filelock_1641470428964/work
106
+ Flask==2.0.2
107
+ fonttools==4.28.5
108
+ fpie==0.2.4
109
+ frozenlist==1.3.0
110
+ fsspec==2023.1.0
111
+ ftfy==6.1.1
112
+ future==0.18.2
113
+ gitdb==4.0.9
114
+ GitPython==3.1.26
115
+ glob2==0.7
116
+ google-api-core==2.4.0
117
+ google-auth==1.35.0
118
+ google-auth-oauthlib==0.4.6
119
+ google-cloud-core==2.2.2
120
+ google-cloud-language==2.3.1
121
+ google-cloud-storage==2.0.0
122
+ google-crc32c==1.3.0
123
+ google-resumable-media==2.1.0
124
+ googleapis-common-protos==1.54.0
125
+ gorilla==0.4.0
126
+ gpustat==0.6.0
127
+ GPUtil==1.4.0
128
+ gradio==3.34.0
129
+ gradio_client==0.2.6
130
+ grpcio==1.43.0
131
+ grpcio-status==1.43.0
132
+ gunicorn==20.1.0
133
+ h11==0.14.0
134
+ h5py==3.6.0
135
+ HeapDict==1.0.1
136
+ hiredis==2.0.0
137
+ horovod==0.28.1
138
+ httpcore==0.17.3
139
+ httpx==0.24.1
140
+ huggingface-hub==0.16.4
141
+ hydra-core==1.3.2
142
+ idna==3.3
143
+ image-reward @ file:///home/jovyan/afilatov/Diffusion/imagen/notebooks/image_assessment/ImageReward
144
+ imageio==2.31.2
145
+ importlib-metadata==4.10.1
146
+ importlib-resources==5.4.0
147
+ inflect==5.3.0
148
+ intervaltree==3.1.0
149
+ ipykernel==6.7.0
150
+ ipymarkup==0.9.0
151
+ ipyplot==1.1.1
152
+ ipython==7.31.1
153
+ ipython-genutils==0.2.0
154
+ ipywidgets==7.6.5
155
+ itsdangerous==2.0.1
156
+ jedi==0.18.1
157
+ Jinja2 @ file:///home/conda/feedstock_root/build_artifacts/jinja2_1636510082894/work
158
+ jmespath==0.10.0
159
+ joblib==1.1.0
160
+ json5==0.9.6
161
+ jsonschema==4.4.0
162
+ jupyter-archive==3.2.1
163
+ jupyter-client==7.1.2
164
+ jupyter-core==4.9.1
165
+ jupyter-server==1.13.4
166
+ jupyter-server-proxy==1.3.2
167
+ jupyter-tensorboard @ file:///tmp/mlspace/packages/jupyter_tensorboard-0.2.2a0-py2.py3-none-any.whl
168
+ jupyterlab==3.3.0a2
169
+ jupyterlab-nvdashboard==0.6.0
170
+ jupyterlab-pygments==0.1.2
171
+ jupyterlab-server==2.10.3
172
+ jupyterlab-tensorboard @ git+https://github.com/rhangelxs/jupyterlab_tensorboard.git@8dc7b1d5f24ece0e76e61b4dbbf36c58b84cbddd
173
+ jupyterlab-widgets==1.0.2
174
+ kfserving==0.6.1
175
+ kiwisolver==1.3.2
176
+ kubernetes==21.7.0
177
+ langcodes==3.3.0
178
+ langid==1.1.6
179
+ libarchive-c @ file:///home/conda/feedstock_root/build_artifacts/python-libarchive-c_1643045751069/work
180
+ libmambapy @ file:///home/conda/feedstock_root/build_artifacts/mamba-split_1643117251182/work/libmambapy
181
+ librosa==0.8.1
182
+ linkify-it-py==2.0.2
183
+ llvmlite==0.38.0
184
+ lmdb==1.4.1
185
+ locket==0.2.1
186
+ Mako==1.1.6
187
+ mamba @ file:///home/conda/feedstock_root/build_artifacts/mamba-split_1643117251182/work/mamba
188
+ Markdown==3.3.6
189
+ markdown-it-py==2.2.0
190
+ MarkupSafe @ file:///home/conda/feedstock_root/build_artifacts/markupsafe_1635833550185/work
191
+ matplotlib==3.5.1
192
+ matplotlib-inline==0.1.3
193
+ mdit-py-plugins==0.3.3
194
+ mdurl==0.1.2
195
+ minio==6.0.2
196
+ mistune==0.8.4
197
+ mlflow @ file:///tmp/mlspace/packages/mlflow-1.7.2-py3-none-any.whl
198
+ mmcv-full==1.4.3
199
+ modin==0.12.1
200
+ mpi4py==3.1.3
201
+ msgpack==1.0.3
202
+ multidict==5.2.0
203
+ multiprocess==0.70.14
204
+ murmurhash==1.0.10
205
+ natasha==1.6.0
206
+ navec==0.10.0
207
+ nbclassic==0.3.5
208
+ nbclient==0.5.10
209
+ nbconvert==6.4.1
210
+ nbformat==5.1.3
211
+ nest-asyncio==1.5.4
212
+ networkx==2.6.3
213
+ nltk==3.6.7
214
+ notebook @ file:///tmp/mlspace/packages/notebook-6.1.4-py3-none-any.whl
215
+ npm==0.1.1
216
+ numba==0.55.0
217
+ numpy==1.21.5
218
+ nvidia-ml-py3==7.352.0
219
+ oauthlib==3.1.1
220
+ omegaconf==2.3.0
221
+ opencensus==0.8.0
222
+ opencensus-context==0.1.2
223
+ opencv-python==4.5.5.62
224
+ opencv-python-headless==4.8.1.78
225
+ optional-django==0.1.0
226
+ optuna==2.10.0
227
+ orjson==3.9.7
228
+ packaging==21.3
229
+ pandas==1.3.5
230
+ pandocfilters==1.5.0
231
+ parso==0.8.3
232
+ partd==1.2.0
233
+ pbr==5.8.0
234
+ pexpect==4.8.0
235
+ pickleshare==0.7.5
236
+ Pillow==9.0.0
237
+ pkginfo @ file:///home/conda/feedstock_root/build_artifacts/pkginfo_1638813452194/work
238
+ pooch==1.5.2
239
+ portalocker==2.3.2
240
+ preshed==3.0.9
241
+ prettytable==3.0.0
242
+ prometheus-client==0.13.0
243
+ prometheus-flask-exporter==0.18.7
244
+ prompt-toolkit==3.0.26
245
+ proto-plus==1.19.8
246
+ protobuf==3.19.3
247
+ psutil @ file:///home/conda/feedstock_root/build_artifacts/psutil_1640887121529/work
248
+ ptyprocess==0.7.0
249
+ py-spy==0.3.11
250
+ pyarrow==12.0.1
251
+ pyasn1==0.4.8
252
+ pyasn1-modules==0.2.8
253
+ pybind11==2.11.1
254
+ pycosat @ file:///home/conda/feedstock_root/build_artifacts/pycosat_1636020357254/work
255
+ pycparser==2.21
256
+ pydantic==1.9.0
257
+ pyDeprecate==0.3.2
258
+ pydub==0.25.1
259
+ pyee==8.2.2
260
+ Pygments==2.16.1
261
+ PyJWT==2.3.0
262
+ pymorphy2==0.9.1
263
+ pymorphy2-dicts-ru==2.4.417127.4579844
264
+ pynvml==11.4.1
265
+ pyOpenSSL @ file:///home/conda/feedstock_root/build_artifacts/pyopenssl_1633192417276/work
266
+ pyparsing==3.0.7
267
+ pyperclip==1.8.2
268
+ pyppeteer==0.2.6
269
+ pyrsistent==0.18.1
270
+ PySocks @ file:///home/conda/feedstock_root/build_artifacts/pysocks_1635862409558/work
271
+ python-dateutil==2.8.2
272
+ python-editor==1.0.4
273
+ python-multipart==0.0.6
274
+ python-speech-features==0.6
275
+ pytorch-lightning==1.7.5
276
+ pytz @ file:///home/conda/feedstock_root/build_artifacts/pytz_1633452062248/work
277
+ PyWavelets==1.3.0
278
+ PyYAML @ file:///home/conda/feedstock_root/build_artifacts/pyyaml_1636139801027/work
279
+ pyzmq==22.3.0
280
+ qudida==0.0.4
281
+ querystring-parser==1.2.4
282
+ ray==1.6.0
283
+ razdel==0.5.0
284
+ redis==4.1.1
285
+ regex==2022.1.18
286
+ requests==2.27.1
287
+ requests-oauthlib==1.3.0
288
+ resampy==0.2.2
289
+ rich==13.6.0
290
+ rsa==4.8
291
+ ruamel-yaml-conda @ file:///home/conda/feedstock_root/build_artifacts/ruamel_yaml_1636009153751/work
292
+ s3fs==2023.1.0
293
+ s3transfer==0.6.2
294
+ sacrebleu==2.0.0
295
+ sacremoses==0.0.53
296
+ safetensors==0.4.0
297
+ scikit-image==0.19.3
298
+ scikit-learn==1.0.1
299
+ scipy==1.7.3
300
+ semantic-version==2.10.0
301
+ Send2Trash==1.8.0
302
+ sentence-transformers==2.2.2
303
+ sentencepiece==0.1.96
304
+ sentry-sdk==1.34.0
305
+ setproctitle==1.3.3
306
+ shortuuid==1.0.11
307
+ simpervisor==0.4
308
+ simplejson==3.17.6
309
+ six==1.16.0
310
+ slovnet==0.6.0
311
+ smart-open==6.4.0
312
+ smmap==5.0.0
313
+ sniffio==1.2.0
314
+ sortedcontainers==2.4.0
315
+ SoundFile==0.10.3.post1
316
+ soupsieve @ file:///home/conda/feedstock_root/build_artifacts/soupsieve_1638550740809/work
317
+ sox==1.4.1
318
+ spacy==3.7.2
319
+ spacy-legacy==3.0.12
320
+ spacy-loggers==1.0.5
321
+ SQLAlchemy==1.3.13
322
+ sqlparse==0.4.2
323
+ srsly==2.4.8
324
+ starlette==0.17.1
325
+ stevedore==3.5.0
326
+ table-logger==0.3.6
327
+ tabulate==0.8.9
328
+ taichi==1.6.0
329
+ tblib==1.7.0
330
+ tensorboard==2.11.2
331
+ tensorboard-data-server==0.6.1
332
+ tensorboard-plugin-wit==1.8.1
333
+ termcolor==2.3.0
334
+ terminado==0.13.1
335
+ testpath==0.5.0
336
+ thinc==8.2.1
337
+ threadpoolctl==3.0.0
338
+ tifffile==2021.11.2
339
+ timm==0.9.7
340
+ tokenizers==0.13.3
341
+ toolz==0.11.2
342
+ torch==1.10.1+cu111
343
+ torchaudio==0.10.1+rocm4.1
344
+ torchmetrics==0.11.4
345
+ torchvision==0.11.2+cu111
346
+ tornado==6.1
347
+ tqdm @ file:///home/conda/feedstock_root/build_artifacts/tqdm_1632160078689/work
348
+ traitlets==5.1.1
349
+ transformers==4.30.2
350
+ typer==0.4.0
351
+ typing_extensions==4.0.1
352
+ uc-micro-py==1.0.2
353
+ urllib3==1.26.18
354
+ uvicorn==0.17.0
355
+ wandb==0.16.0
356
+ wasabi==1.1.2
357
+ wcwidth==0.2.5
358
+ weasel==0.3.4
359
+ webdataset==0.2.74
360
+ webencodings==0.5.1
361
+ websocket-client==1.2.3
362
+ websockets==11.0.3
363
+ Werkzeug==2.0.2
364
+ widgetsnbextension==3.5.2
365
+ wrapt==1.13.3
366
+ xgboost==1.5.2
367
+ xxhash==3.4.1
368
+ yapf==0.32.0
369
+ yargy==0.16.0
370
+ yarl==1.7.2
371
+ zict==2.0.0
372
+ zipp==3.7.0
Kandinsky-3/kandinsky3/__init__.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Optional, Union
3
+
4
+ import torch
5
+ from huggingface_hub import hf_hub_download, snapshot_download
6
+
7
+ from kandinsky3.model.unet import UNet
8
+ from kandinsky3.movq import MoVQ
9
+ from kandinsky3.condition_encoders import T5TextConditionEncoder
10
+ from kandinsky3.condition_processors import T5TextConditionProcessor
11
+ from kandinsky3.model.diffusion import BaseDiffusion, get_named_beta_schedule
12
+
13
+ from .t2i_pipeline import Kandinsky3T2IPipeline
14
+ from .inpainting_pipeline import Kandinsky3InpaintingPipeline
15
+
16
+
17
+ def get_T2I_unet(
18
+ device: Union[str, torch.device],
19
+ weights_path: Optional[str] = None,
20
+ dtype: Union[str, torch.dtype] = torch.float32,
21
+ ) -> (UNet, Optional[torch.Tensor], Optional[dict]):
22
+ unet = UNet(
23
+ model_channels=384,
24
+ num_channels=4,
25
+ init_channels=192,
26
+ time_embed_dim=1536,
27
+ context_dim=4096,
28
+ groups=32,
29
+ head_dim=64,
30
+ expansion_ratio=4,
31
+ compression_ratio=2,
32
+ dim_mult=(1, 2, 4, 8),
33
+ num_blocks=(3, 3, 3, 3),
34
+ add_cross_attention=(False, True, True, True),
35
+ add_self_attention=(False, True, True, True),
36
+ )
37
+
38
+ null_embedding = None
39
+ if weights_path:
40
+ state_dict = torch.load(weights_path, map_location=torch.device('cpu'))
41
+ null_embedding = state_dict['null_embedding']
42
+ unet.load_state_dict(state_dict['unet'])
43
+
44
+ unet.to(device=device, dtype=dtype).eval()
45
+ return unet, null_embedding
46
+
47
+
48
+ def get_T5encoder(
49
+ device: Union[str, torch.device],
50
+ weights_path: str,
51
+ projection_name: str,
52
+ dtype: Union[str, torch.dtype] = torch.float32,
53
+ low_cpu_mem_usage: bool = True,
54
+ load_in_8bit: bool = False,
55
+ load_in_4bit: bool = False,
56
+ ) -> (T5TextConditionProcessor, T5TextConditionEncoder):
57
+ tokens_length = 128
58
+ context_dim = 4096
59
+ processor = T5TextConditionProcessor(tokens_length, weights_path)
60
+ condition_encoder = T5TextConditionEncoder(
61
+ weights_path, context_dim, low_cpu_mem_usage=low_cpu_mem_usage, device=device,
62
+ dtype=dtype, load_in_8bit=load_in_8bit, load_in_4bit=load_in_4bit
63
+ )
64
+
65
+ if weights_path:
66
+ projections_weights_path = os.path.join(weights_path, projection_name)
67
+ state_dict = torch.load(projections_weights_path, map_location=torch.device('cpu'))
68
+ condition_encoder.projection.load_state_dict(state_dict)
69
+
70
+ condition_encoder.projection.to(device=device, dtype=dtype).eval()
71
+ return processor, condition_encoder
72
+
73
+
74
+ def get_movq(
75
+ device: Union[str, torch.device],
76
+ weights_path: Optional[str] = None,
77
+ dtype: Union[str, torch.dtype] = torch.float32,
78
+ ) -> MoVQ:
79
+ generator_config = {
80
+ 'double_z': False,
81
+ 'z_channels': 4,
82
+ 'resolution': 256,
83
+ 'in_channels': 3,
84
+ 'out_ch': 3,
85
+ 'ch': 256,
86
+ 'ch_mult': [1, 2, 2, 4],
87
+ 'num_res_blocks': 2,
88
+ 'attn_resolutions': [32],
89
+ 'dropout': 0.0
90
+ }
91
+ movq = MoVQ(generator_config)
92
+
93
+ if weights_path:
94
+ state_dict = torch.load(weights_path, map_location=torch.device('cpu'))
95
+ movq.load_state_dict(state_dict)
96
+
97
+ movq.to(device=device, dtype=dtype).eval()
98
+ return movq
99
+
100
+
101
+ def get_inpainting_unet(
102
+ device: Union[str, torch.device],
103
+ weights_path: Optional[str] = None,
104
+ dtype: Union[str, torch.dtype] = torch.float32,
105
+ ) -> (UNet, Optional[torch.Tensor], Optional[dict]):
106
+ unet = UNet(
107
+ model_channels=384,
108
+ num_channels=9,
109
+ init_channels=192,
110
+ time_embed_dim=1536,
111
+ context_dim=4096,
112
+ groups=32,
113
+ head_dim=64,
114
+ expansion_ratio=4,
115
+ compression_ratio=2,
116
+ dim_mult=(1, 2, 4, 8),
117
+ num_blocks=(3, 3, 3, 3),
118
+ add_cross_attention=(False, True, True, True),
119
+ add_self_attention=(False, True, True, True),
120
+ )
121
+
122
+ null_embedding = None
123
+ if weights_path:
124
+ state_dict = torch.load(weights_path, map_location=torch.device('cpu'))
125
+ null_embedding = state_dict['null_embedding']
126
+ unet.load_state_dict(state_dict['unet'])
127
+
128
+ unet.to(device=device, dtype=dtype).eval()
129
+ return unet, null_embedding
130
+
131
+
132
+ def get_T2I_pipeline(
133
+ device_map: Union[str, torch.device, dict],
134
+ dtype_map: Union[str, torch.dtype, dict] = torch.float32,
135
+ low_cpu_mem_usage: bool = True,
136
+ load_in_8bit: bool = False,
137
+ load_in_4bit: bool = False,
138
+ cache_dir: str = '/tmp/kandinsky3/',
139
+ unet_path: str = None,
140
+ text_encoder_path: str = None,
141
+ movq_path: str = None,
142
+ ) -> Kandinsky3T2IPipeline:
143
+ # assert ((unet_path is not None) or (text_encoder_path is not None) or (movq_path is not None))
144
+ if not isinstance(device_map, dict):
145
+ device_map = {
146
+ 'unet': device_map, 'text_encoder': device_map, 'movq': device_map
147
+ }
148
+ if not isinstance(dtype_map, dict):
149
+ dtype_map = {
150
+ 'unet': dtype_map, 'text_encoder': dtype_map, 'movq': dtype_map
151
+ }
152
+
153
+ if unet_path is None:
154
+ unet_path = hf_hub_download(
155
+ repo_id="ai-forever/Kandinsky3.1", filename='weights/kandinsky3.pt', cache_dir=cache_dir
156
+ )
157
+ if text_encoder_path is None:
158
+ text_encoder_path = snapshot_download(
159
+ repo_id="ai-forever/Kandinsky3.1", allow_patterns="weights/flan_ul2_encoder/*", cache_dir=cache_dir
160
+ )
161
+ text_encoder_path = os.path.join(text_encoder_path, 'weights/flan_ul2_encoder')
162
+ if movq_path is None:
163
+ movq_path = hf_hub_download(
164
+ repo_id="ai-forever/Kandinsky3.1", filename='weights/movq.pt', cache_dir=cache_dir
165
+ )
166
+
167
+ unet, null_embedding = get_T2I_unet(device_map['unet'], unet_path, dtype=dtype_map['unet'])
168
+ processor, condition_encoder = get_T5encoder(
169
+ device_map['text_encoder'], text_encoder_path, 'projection.pt', dtype=dtype_map['text_encoder'],
170
+ low_cpu_mem_usage=low_cpu_mem_usage, load_in_8bit=load_in_8bit, load_in_4bit=load_in_4bit
171
+ )
172
+ movq = get_movq(device_map['movq'], movq_path, dtype=dtype_map['movq'])
173
+ return Kandinsky3T2IPipeline(
174
+ device_map, dtype_map, unet, null_embedding, processor, condition_encoder, movq, False
175
+ )
176
+
177
+
178
+ def get_T2I_Flash_pipeline(
179
+ device_map: Union[str, torch.device, dict],
180
+ dtype_map: Union[str, torch.dtype, dict] = torch.float32,
181
+ low_cpu_mem_usage: bool = True,
182
+ load_in_8bit: bool = False,
183
+ load_in_4bit: bool = False,
184
+ cache_dir: str = '/tmp/kandinsky3/',
185
+ unet_path: str = None,
186
+ text_encoder_path: str = None,
187
+ movq_path: str = None,
188
+ ) -> Kandinsky3T2IPipeline:
189
+ # assert ((unet_path is not None) or (text_encoder_path is not None) or (movq_path is not None))
190
+ if not isinstance(device_map, dict):
191
+ device_map = {
192
+ 'unet': device_map, 'text_encoder': device_map, 'movq': device_map
193
+ }
194
+ if not isinstance(dtype_map, dict):
195
+ dtype_map = {
196
+ 'unet': dtype_map, 'text_encoder': dtype_map, 'movq': dtype_map
197
+ }
198
+
199
+ if unet_path is None:
200
+ unet_path = hf_hub_download(
201
+ repo_id="ai-forever/Kandinsky3.1", filename='weights/kandinsky3_flash.pt', cache_dir=cache_dir
202
+ )
203
+ if text_encoder_path is None:
204
+ text_encoder_path = snapshot_download(
205
+ repo_id="ai-forever/Kandinsky3.1", allow_patterns="weights/flan_ul2_encoder/*", cache_dir=cache_dir
206
+ )
207
+ text_encoder_path = os.path.join(text_encoder_path, 'weights/flan_ul2_encoder')
208
+ if movq_path is None:
209
+ movq_path = hf_hub_download(
210
+ repo_id="ai-forever/Kandinsky3.1", filename='weights/movq.pt', cache_dir=cache_dir
211
+ )
212
+
213
+ unet, null_embedding = get_T2I_unet(device_map['unet'], unet_path, dtype=dtype_map['unet'])
214
+ processor, condition_encoder = get_T5encoder(
215
+ device_map['text_encoder'], text_encoder_path, 'projection_flash.pt', dtype=dtype_map['text_encoder'],
216
+ low_cpu_mem_usage=low_cpu_mem_usage, load_in_8bit=load_in_8bit, load_in_4bit=load_in_4bit
217
+ )
218
+ movq = get_movq(device_map['movq'], movq_path, dtype=dtype_map['movq'])
219
+ return Kandinsky3T2IPipeline(
220
+ device_map, dtype_map, unet, null_embedding, processor, condition_encoder, movq, True
221
+ )
222
+
223
+
224
+ def get_inpainting_pipeline(
225
+ device_map: Union[str, torch.device, dict],
226
+ dtype_map: Union[str, torch.dtype, dict] = torch.float32,
227
+ low_cpu_mem_usage: bool = True,
228
+ load_in_8bit: bool = False,
229
+ load_in_4bit: bool = False,
230
+ cache_dir: str = '/tmp/kandinsky3/',
231
+ unet_path: str = None,
232
+ text_encoder_path: str = None,
233
+ movq_path: str = None,
234
+ ) -> Kandinsky3InpaintingPipeline:
235
+ # assert ((unet_path is not None) or (text_encoder_path is not None) or (movq_path is not None))
236
+ if not isinstance(device_map, dict):
237
+ device_map = {
238
+ 'unet': device_map, 'text_encoder': device_map, 'movq': device_map
239
+ }
240
+ if not isinstance(dtype_map, dict):
241
+ dtype_map = {
242
+ 'unet': dtype_map, 'text_encoder': dtype_map, 'movq': dtype_map
243
+ }
244
+
245
+ if unet_path is None:
246
+ unet_path = hf_hub_download(
247
+ repo_id="ai-forever/Kandinsky3.1", filename='weights/kandinsky3_inpainting.pt', cache_dir=cache_dir
248
+ )
249
+ if text_encoder_path is None:
250
+ text_encoder_path = snapshot_download(
251
+ repo_id="ai-forever/Kandinsky3.1", allow_patterns="weights/flan_ul2_encoder/*", cache_dir=cache_dir
252
+ )
253
+ text_encoder_path = os.path.join(text_encoder_path, 'weights/flan_ul2_encoder')
254
+ if movq_path is None:
255
+ movq_path = hf_hub_download(
256
+ repo_id="ai-forever/Kandinsky3.1", filename='weights/movq.pt', cache_dir=cache_dir
257
+ )
258
+
259
+ unet, null_embedding = get_inpainting_unet(device_map['unet'], unet_path, dtype=dtype_map['unet'])
260
+ processor, condition_encoder = get_T5encoder(
261
+ device_map['text_encoder'], text_encoder_path, 'projection_inpainting.pt', dtype=dtype_map['text_encoder'],
262
+ low_cpu_mem_usage=low_cpu_mem_usage, load_in_8bit=load_in_8bit, load_in_4bit=load_in_4bit
263
+ )
264
+ movq = get_movq(device_map['movq'], movq_path, dtype=dtype_map['movq'])
265
+ return Kandinsky3InpaintingPipeline(
266
+ device_map, dtype_map, unet, null_embedding, processor, condition_encoder, movq
267
+ )
Kandinsky-3/kandinsky3/condition_encoders.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from transformers import T5EncoderModel
4
+ from typing import Optional, Union
5
+
6
+
7
+ class T5TextConditionEncoder(nn.Module):
8
+
9
+ def __init__(
10
+ self, model_path, context_dim,
11
+ low_cpu_mem_usage: bool = True, device: Optional[str] = None,
12
+ dtype: Union[str, torch.dtype] = torch.float32, load_in_4bit: bool = False, load_in_8bit: bool = False
13
+ ):
14
+ super().__init__()
15
+ self.encoder = T5EncoderModel.from_pretrained(
16
+ model_path, low_cpu_mem_usage=low_cpu_mem_usage, device_map=device,
17
+ torch_dtype=dtype, load_in_8bit=load_in_8bit, load_in_4bit=load_in_4bit,
18
+ ).encoder
19
+ self.projection = nn.Sequential(
20
+ nn.Linear(self.encoder.config.d_model, context_dim, bias=False),
21
+ nn.LayerNorm(context_dim)
22
+ )
23
+
24
+ def forward(self, model_input):
25
+ embeddings = self.encoder(**model_input).last_hidden_state
26
+ context = self.projection(embeddings)
27
+ if 'attention_mask' in model_input:
28
+ context_mask = model_input['attention_mask']
29
+ context[context_mask == 0] = torch.zeros_like(context[context_mask == 0])
30
+ max_seq_length = context_mask.sum(-1).max() + 1
31
+ context = context[:, :max_seq_length]
32
+ context_mask = context_mask[:, :max_seq_length]
33
+ else:
34
+ context_mask = torch.ones(*embeddings.shape[:-1], dtype=torch.long, device=embeddings.device)
35
+ return context, context_mask
36
+
37
+
38
+ def get_condition_encoder(conf):
39
+ return T5TextConditionEncoder(**conf)
40
+
Kandinsky-3/kandinsky3/condition_processors.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import T5Tokenizer
3
+
4
+
5
+ class T5TextConditionProcessor:
6
+
7
+ def __init__(self, tokens_length, processor_path):
8
+ self.tokens_length = tokens_length
9
+ self.processor = T5Tokenizer.from_pretrained(processor_path)
10
+
11
+ def encode(self, text=None, negative_text=None):
12
+ encoded = self.processor(text, max_length=self.tokens_length, truncation=True)
13
+ pad_length = self.tokens_length - len(encoded['input_ids'])
14
+ input_ids = encoded['input_ids'] + [self.processor.pad_token_id] * pad_length
15
+ attention_mask = encoded['attention_mask'] + [0] * pad_length
16
+ condition_model_input = {
17
+ 'input_ids': torch.tensor(input_ids, dtype=torch.long),
18
+ 'attention_mask': torch.tensor(attention_mask, dtype=torch.long)
19
+ }
20
+
21
+ if negative_text is not None:
22
+ negative_encoded = self.processor(negative_text, max_length=self.tokens_length, truncation=True)
23
+ negative_input_ids = negative_encoded['input_ids'][:len(encoded['input_ids'])]
24
+ negative_input_ids[-1] = self.processor.eos_token_id
25
+ negative_pad_length = self.tokens_length - len(negative_input_ids)
26
+ negative_input_ids = negative_input_ids + [self.processor.pad_token_id] * negative_pad_length
27
+ negative_attention_mask = encoded['attention_mask'] + [0] * pad_length
28
+ negative_condition_model_input = {
29
+ 'input_ids': torch.tensor(negative_input_ids, dtype=torch.long),
30
+ 'attention_mask': torch.tensor(negative_attention_mask, dtype=torch.long)
31
+ }
32
+ else:
33
+ negative_condition_model_input = None
34
+ return condition_model_input, negative_condition_model_input
Kandinsky-3/kandinsky3/inpainting_pipeline.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Union, List
2
+ import PIL
3
+ import numpy as np
4
+
5
+ import torch
6
+ import torchvision.transforms as T
7
+ from einops import repeat
8
+
9
+ from kandinsky3.model.unet import UNet
10
+ from kandinsky3.movq import MoVQ
11
+ from kandinsky3.condition_encoders import T5TextConditionEncoder
12
+ from kandinsky3.condition_processors import T5TextConditionProcessor
13
+ from kandinsky3.model.diffusion import BaseDiffusion, get_named_beta_schedule
14
+ from kandinsky3.utils import resize_image_for_diffusion, resize_mask_for_diffusion
15
+
16
+
17
+ class Kandinsky3InpaintingPipeline:
18
+
19
+ def __init__(
20
+ self,
21
+ device_map: Union[str, torch.device, dict],
22
+ dtype_map: Union[str, torch.dtype, dict],
23
+ unet: UNet,
24
+ null_embedding: torch.Tensor,
25
+ t5_processor: T5TextConditionProcessor,
26
+ t5_encoder: T5TextConditionEncoder,
27
+ movq: MoVQ,
28
+ ):
29
+ self.device_map = device_map
30
+ self.dtype_map = dtype_map
31
+ self.to_pil = T.ToPILImage()
32
+ self.to_tensor = T.ToTensor()
33
+
34
+ self.unet = unet
35
+ self.null_embedding = null_embedding
36
+ self.t5_processor = t5_processor
37
+ self.t5_encoder = t5_encoder
38
+ self.movq = movq
39
+
40
+ def shared_step(self, batch: dict) -> dict:
41
+ image = batch['image']
42
+ condition_model_input = batch['text']
43
+ negative_condition_model_input = batch['negative_text']
44
+
45
+ bs = image.shape[0]
46
+
47
+ masked_latent = None
48
+ mask = batch['mask']
49
+
50
+ if 'masked_image' in batch:
51
+ masked_latent = batch['masked_image']
52
+ elif self.unet.in_layer.in_channels == 9:
53
+ masked_latent = image.masked_fill((1 - mask).bool(), 0)
54
+ else:
55
+ raise ValueError()
56
+
57
+ with torch.cuda.amp.autocast(dtype=self.dtype_map['movq']):
58
+ masked_latent = self.movq.encode(masked_latent)
59
+ mask = torch.nn.functional.interpolate(mask, size=(masked_latent.shape[2], masked_latent.shape[3]))
60
+
61
+ with torch.cuda.amp.autocast(dtype=self.dtype_map['text_encoder']):
62
+ context, context_mask = self.t5_encoder(condition_model_input)
63
+
64
+ if negative_condition_model_input is not None:
65
+ negative_context, negative_context_mask = self.t5_encoder(negative_condition_model_input)
66
+ else:
67
+ negative_context, negative_context_mask = None, None
68
+
69
+ return {
70
+ 'context': context,
71
+ 'context_mask': context_mask,
72
+ 'negative_context': negative_context,
73
+ 'negative_context_mask': negative_context_mask,
74
+ 'image': image,
75
+ 'masked_latent': masked_latent,
76
+ 'mask': mask
77
+ }
78
+
79
+ def prepare_batch(
80
+ self,
81
+ text: str,
82
+ negative_text: str,
83
+ image: PIL.Image.Image,
84
+ mask: np.ndarray,
85
+ ) -> dict:
86
+ condition_model_input, negative_condition_model_input = self.t5_processor.encode(
87
+ text=text, negative_text=negative_text
88
+ )
89
+ batch = {
90
+ 'image': self.to_tensor(resize_image_for_diffusion(image.convert("RGB"))) * 2 - 1,
91
+ 'mask': 1 - self.to_tensor(resize_mask_for_diffusion(mask)),
92
+ 'text': condition_model_input,
93
+ 'negative_text': negative_condition_model_input
94
+ }
95
+ batch['mask'] = batch['mask'].type(self.dtype_map['movq'])
96
+
97
+ batch['image'] = batch['image'].unsqueeze(0).to(self.device_map['movq'])
98
+ batch['text']['input_ids'] = batch['text']['input_ids'].unsqueeze(0).to(self.device_map['text_encoder'])
99
+ batch['text']['attention_mask'] = batch['text']['attention_mask'].unsqueeze(0).to(
100
+ self.device_map['text_encoder'])
101
+ batch['mask'] = batch['mask'].unsqueeze(0).to(self.device_map['movq'])
102
+
103
+ if negative_condition_model_input is not None:
104
+ batch['negative_text']['input_ids'] = batch['negative_text']['input_ids'].to(
105
+ self.device_map['text_encoder'])
106
+ batch['negative_text']['attention_mask'] = batch['negative_text']['attention_mask'].to(
107
+ self.device_map['text_encoder'])
108
+
109
+ return batch
110
+
111
+ def __call__(
112
+ self,
113
+ text: str,
114
+ image: PIL.Image.Image,
115
+ mask: np.ndarray,
116
+ negative_text: str = None,
117
+ images_num: int = 1,
118
+ bs: int = 1,
119
+ steps: int = 50,
120
+ guidance_weight_text: float = 4,
121
+ eta=1.0
122
+ ) -> List[PIL.Image.Image]:
123
+
124
+ with torch.no_grad():
125
+ batch = self.prepare_batch(text, negative_text, image, mask)
126
+ processed = self.shared_step(batch)
127
+ betas = get_named_beta_schedule('cosine', 1000)
128
+ base_diffusion = BaseDiffusion(betas, percentile=0.95)
129
+ times = list(range(999, 0, -1000 // steps))
130
+
131
+ pil_images = []
132
+ k, m = images_num // bs, images_num % bs
133
+ for minibatch in [bs] * k + [m]:
134
+ if minibatch == 0:
135
+ continue
136
+
137
+ bs_context = repeat(processed['context'], '1 n d -> b n d', b=minibatch)
138
+ bs_context_mask = repeat(processed['context_mask'], '1 n -> b n', b=minibatch)
139
+
140
+ if processed['negative_context'] is not None:
141
+ bs_negative_context = repeat(processed['negative_context'], '1 n d -> b n d', b=minibatch)
142
+ bs_negative_context_mask = repeat(processed['negative_context_mask'], '1 n -> b n', b=minibatch)
143
+ else:
144
+ bs_negative_context, bs_negative_context_mask = None, None
145
+
146
+ mask = processed['mask'].repeat_interleave(minibatch, dim=0)
147
+ masked_latent = processed['masked_latent'].repeat_interleave(minibatch, dim=0)
148
+
149
+ minibatch = masked_latent.shape[0]
150
+
151
+ with torch.cuda.amp.autocast(dtype=self.dtype_map['unet']):
152
+ with torch.no_grad():
153
+ images = base_diffusion.p_sample_loop(
154
+ self.unet, (minibatch, 4, masked_latent.shape[2], masked_latent.shape[3]), times,
155
+ self.device_map['unet'],
156
+ bs_context, bs_context_mask, self.null_embedding, guidance_weight_text, eta,
157
+ negative_context=bs_negative_context, negative_context_mask=bs_negative_context_mask,
158
+ mask=mask, masked_latent=masked_latent, gan=False
159
+ )
160
+
161
+ with torch.cuda.amp.autocast(dtype=self.dtype_map['movq']):
162
+ images = torch.cat([self.movq.decode(image) for image in images.chunk(2)])
163
+ images = torch.clip((images + 1.) / 2., 0., 1.).cpu()
164
+
165
+ for images_chunk in images.chunk(1):
166
+ pil_images += [self.to_pil(image) for image in images_chunk]
167
+
168
+ return pil_images
Kandinsky-3/kandinsky3/model/__init__.py ADDED
File without changes
Kandinsky-3/kandinsky3/model/diffusion.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ from einops import rearrange
5
+ from tqdm import tqdm
6
+
7
+ from .utils import get_tensor_items
8
+
9
+
10
+ def get_named_beta_schedule(schedule_name, timesteps):
11
+ if schedule_name == "linear":
12
+ scale = 1000 / timesteps
13
+ beta_start = scale * 0.0001
14
+ beta_end = scale * 0.02
15
+ return torch.linspace(
16
+ beta_start, beta_end, timesteps, dtype=torch.float32
17
+ )
18
+ elif schedule_name == "cosine":
19
+ alpha_bar = lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
20
+ betas = []
21
+ for i in range(timesteps):
22
+ t1 = i / timesteps
23
+ t2 = (i + 1) / timesteps
24
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), 0.999))
25
+ return torch.tensor(betas, dtype=torch.float32)
26
+
27
+
28
+ class BaseDiffusion:
29
+
30
+ def __init__(self, betas, percentile=None, gen_noise=torch.randn_like):
31
+ self.betas = betas
32
+ self.num_timesteps = betas.shape[0]
33
+
34
+ alphas = 1. - betas
35
+ self.alphas_cumprod = torch.cumprod(alphas, dim=0)
36
+ self.alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=betas.dtype), self.alphas_cumprod[:-1]])
37
+
38
+ # calculate q(x_t | x_{t-1})
39
+ self.sqrt_alphas_cumprod = torch.sqrt(self.alphas_cumprod)
40
+ self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - self.alphas_cumprod)
41
+
42
+ # calculate q(x_{t-1} | x_t, x_0)
43
+ self.posterior_mean_coef_1 = torch.sqrt(self.alphas_cumprod_prev) * betas / (1. - self.alphas_cumprod)
44
+ self.posterior_mean_coef_2 = torch.sqrt(alphas) * (1. - self.alphas_cumprod_prev) / (1. - self.alphas_cumprod)
45
+ self.posterior_variance = betas * (1. - self.alphas_cumprod_prev) / (1. - self.alphas_cumprod)
46
+ self.posterior_log_variance = torch.log(
47
+ torch.cat([self.posterior_variance[1].unsqueeze(0), self.posterior_variance[1:]])
48
+ )
49
+
50
+ self.percentile = percentile
51
+ self.time_scale = 1000 // self.num_timesteps
52
+ self.gen_noise = gen_noise
53
+ self.jump_length = 3
54
+
55
+ def process_x_start(self, x_start):
56
+ bs, ndims = x_start.shape[0], len(x_start.shape[1:])
57
+ if self.percentile is not None:
58
+ quantile = torch.quantile(
59
+ rearrange(x_start, 'b ... -> b (...)').abs(),
60
+ self.percentile,
61
+ dim=-1
62
+ )
63
+ quantile = torch.clip(quantile, min=1.)
64
+ quantile = quantile.reshape(bs, *((1,) * ndims))
65
+ return torch.clip(x_start, -quantile, quantile) / quantile
66
+ else:
67
+ return torch.clip(x_start, -1., 1.)
68
+
69
+ def get_x_start(self, x, t, noise):
70
+ sqrt_one_minus_alphas_cumprod = get_tensor_items(self.sqrt_one_minus_alphas_cumprod, t, noise.shape)
71
+ sqrt_alphas_cumprod = get_tensor_items(self.sqrt_alphas_cumprod, t, noise.shape)
72
+ pred_x_start = (x - sqrt_one_minus_alphas_cumprod * noise) / sqrt_alphas_cumprod
73
+ return pred_x_start
74
+
75
+ def get_noise(self, x, t, x_start):
76
+ sqrt_one_minus_alphas_cumprod = get_tensor_items(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
77
+ sqrt_alphas_cumprod = get_tensor_items(self.sqrt_alphas_cumprod, t, x_start.shape)
78
+ pred_noise = (x - sqrt_alphas_cumprod * x_start) / sqrt_one_minus_alphas_cumprod
79
+ return pred_noise
80
+
81
+ def q_sample(self, x_start, t, noise=None):
82
+ if noise is None:
83
+ noise = self.gen_noise(x_start)
84
+ sqrt_alphas_cumprod = get_tensor_items(self.sqrt_alphas_cumprod, t, x_start.shape)
85
+ sqrt_one_minus_alphas_cumprod = get_tensor_items(self.sqrt_one_minus_alphas_cumprod, t, noise.shape)
86
+ x_t = sqrt_alphas_cumprod * x_start + sqrt_one_minus_alphas_cumprod * noise
87
+ return x_t
88
+
89
+ def q_posterior_mean_variance(self, x_start, x_t, t):
90
+ posterior_mean_coef_1 = get_tensor_items(self.posterior_mean_coef_1, t, x_start.shape)
91
+ posterior_mean_coef_2 = get_tensor_items(self.posterior_mean_coef_2, t, x_t.shape)
92
+ posterior_mean = posterior_mean_coef_1 * x_start + posterior_mean_coef_2 * x_t
93
+
94
+ posterior_variance = get_tensor_items(self.posterior_variance, t, x_start.shape)
95
+ posterior_log_variance = get_tensor_items(self.posterior_log_variance, t, x_start.shape)
96
+ return posterior_mean, posterior_variance, posterior_log_variance
97
+
98
+ def q_posterior_variance(self, t, prev_t, shape, eta=1., ):
99
+ alphas_cumprod = get_tensor_items(self.alphas_cumprod, t, shape)
100
+ prev_alphas_cumprod = get_tensor_items(self.alphas_cumprod, prev_t, shape)
101
+
102
+ posterior_variance = torch.sqrt(
103
+ eta * (1. - alphas_cumprod / prev_alphas_cumprod) * (1. - prev_alphas_cumprod) / (1. - alphas_cumprod)
104
+ )
105
+ return posterior_variance
106
+
107
+ def text_guidance(
108
+ self, model, x, t, context, context_mask, null_embedding, guidance_weight_text,
109
+ uncondition_context=None, uncondition_context_mask=None, mask=None, masked_latent=None
110
+ ):
111
+ large_x = x.repeat(2, 1, 1, 1)
112
+ large_t = t.repeat(2).to(x.dtype)
113
+
114
+ if uncondition_context is None:
115
+ uncondition_context = torch.zeros_like(context)
116
+ uncondition_context_mask = torch.zeros_like(context_mask)
117
+ uncondition_context[:, 0] = null_embedding
118
+ uncondition_context_mask[:, 0] = 1
119
+ large_context = torch.cat([context, uncondition_context])
120
+ large_context_mask = torch.cat([context_mask, uncondition_context_mask])
121
+
122
+ if mask is not None:
123
+ mask = mask.repeat(2, 1, 1, 1)
124
+ if masked_latent is not None:
125
+ masked_latent = masked_latent.repeat(2, 1, 1, 1)
126
+
127
+ if model.in_layer.in_channels == 9:
128
+ large_x = torch.cat([large_x, mask, masked_latent], dim=1)
129
+
130
+ pred_large_noise = model(large_x, large_t * self.time_scale, large_context, large_context_mask.bool())
131
+ pred_noise, uncond_pred_noise = torch.chunk(pred_large_noise, 2)
132
+ pred_noise = (guidance_weight_text + 1.) * pred_noise - guidance_weight_text * uncond_pred_noise
133
+ return pred_noise
134
+
135
+ def p_mean_variance(
136
+ self, model, x, t, prev_t, context, context_mask, null_embedding, guidance_weight_text, eta=1.,
137
+ negative_context=None, negative_context_mask=None, mask=None, masked_latent=None
138
+ ):
139
+
140
+ pred_noise = self.text_guidance(
141
+ model, x, t, context, context_mask, null_embedding, guidance_weight_text,
142
+ negative_context, negative_context_mask, mask, masked_latent
143
+ )
144
+
145
+ pred_x_start = self.get_x_start(x, t, pred_noise)
146
+ pred_x_start = self.process_x_start(pred_x_start)
147
+ pred_noise = self.get_noise(x, t, pred_x_start)
148
+ pred_var = self.q_posterior_variance(t, prev_t, x.shape, eta)
149
+
150
+ prev_alphas_cumprod = get_tensor_items(self.alphas_cumprod, prev_t, x.shape)
151
+ pred_mean = torch.sqrt(prev_alphas_cumprod) * pred_x_start
152
+ pred_mean += torch.sqrt(1. - prev_alphas_cumprod - pred_var ** 2) * pred_noise
153
+ return pred_mean, pred_var
154
+
155
+ @torch.no_grad()
156
+ def p_sample(
157
+ self, model, x, t, prev_t, context, context_mask, null_embedding, guidance_weight_text, eta=1.,
158
+ negative_context=None, negative_context_mask=None, mask=None, masked_latent=None
159
+ ):
160
+ bs = x.shape[0]
161
+ ndims = len(x.shape[1:])
162
+ pred_mean, pred_var = self.p_mean_variance(
163
+ model, x, t, prev_t, context, context_mask, null_embedding, guidance_weight_text, eta,
164
+ negative_context=negative_context, negative_context_mask=negative_context_mask,
165
+ mask=mask, masked_latent=masked_latent
166
+ )
167
+ noise = torch.randn_like(x)
168
+ mask = (prev_t != 0).reshape(bs, *((1,) * ndims))
169
+ sample = pred_mean + mask * pred_var * noise
170
+ return sample
171
+
172
+ @torch.no_grad()
173
+ def p_sample_loop(
174
+ self, model, shape, times, device, context, context_mask, null_embedding, guidance_weight_text, eta=1.,
175
+ negative_context=None, negative_context_mask=None, mask=None, masked_latent=None, gan=False,
176
+ ):
177
+ img = torch.randn(*shape, device=device)
178
+ times = times + [0, ]
179
+ times = list(zip(times[:-1], times[1:]))
180
+
181
+ for time, prev_time in tqdm(times):
182
+ time = torch.tensor([time] * shape[0], device=device)
183
+ if gan:
184
+ x_t = self.q_sample(img, time)
185
+ pred_noise = model(x_t, time.type(x_t.dtype), context, context_mask.bool())
186
+ img = self.get_x_start(x_t, time, pred_noise)
187
+ else:
188
+ prev_time = torch.tensor([prev_time] * shape[0], device=device)
189
+ img = self.p_sample(
190
+ model, img, time, prev_time, context, context_mask, null_embedding, guidance_weight_text, eta,
191
+ negative_context=negative_context, negative_context_mask=negative_context_mask,
192
+ mask=mask, masked_latent=masked_latent
193
+ )
194
+ return img
195
+
196
+
197
+ def get_diffusion(conf):
198
+ betas = get_named_beta_schedule(**conf.schedule_params)
199
+ base_diffusion = BaseDiffusion(betas, **conf.diffusion_params)
200
+ return base_diffusion
Kandinsky-3/kandinsky3/model/nn.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ from torch import nn, einsum
5
+ from einops import rearrange, repeat
6
+
7
+ from .utils import exist
8
+
9
+
10
+ class Identity(nn.Module):
11
+ def __init__(self, *args, **kwargs):
12
+ super().__init__()
13
+
14
+ @staticmethod
15
+ def forward(x, *args, **kwargs):
16
+ return x
17
+
18
+
19
+ class SinusoidalPosEmb(nn.Module):
20
+
21
+ def __init__(self, dim):
22
+ super().__init__()
23
+ self.dim = dim
24
+
25
+ def forward(self, x):
26
+ half_dim = self.dim // 2
27
+ emb = math.log(10000) / (half_dim - 1)
28
+ emb = torch.exp(torch.arange(half_dim, device=x.device, dtype=x.dtype) * -emb)
29
+ emb = rearrange(x, 'i -> i 1') * rearrange(emb, 'j -> 1 j')
30
+ return torch.cat((emb.sin(), emb.cos()), dim=-1)
31
+
32
+
33
+ class ConditionalGroupNorm(nn.Module):
34
+
35
+ def __init__(self, groups, normalized_shape, context_dim):
36
+ super().__init__()
37
+ self.norm = nn.GroupNorm(groups, normalized_shape, affine=False)
38
+ self.context_mlp = nn.Sequential(
39
+ nn.SiLU(),
40
+ nn.Linear(context_dim, 2 * normalized_shape)
41
+ )
42
+ self.context_mlp[1].weight.data.zero_()
43
+ self.context_mlp[1].bias.data.zero_()
44
+
45
+ def forward(self, x, context):
46
+ context = self.context_mlp(context)
47
+ ndims = ' 1' * len(x.shape[2:])
48
+ context = rearrange(context, f'b c -> b c{ndims}')
49
+
50
+ scale, shift = context.chunk(2, dim=1)
51
+ x = self.norm(x) * (scale + 1.) + shift
52
+ return x
53
+
54
+
55
+ class Attention(nn.Module):
56
+
57
+ def __init__(self, in_channels, out_channels, context_dim, head_dim=64):
58
+ super().__init__()
59
+ assert out_channels % head_dim == 0
60
+ self.num_heads = out_channels // head_dim
61
+ self.scale = head_dim ** -0.5
62
+
63
+ self.to_query = nn.Linear(in_channels, out_channels, bias=False)
64
+ self.to_key = nn.Linear(context_dim, out_channels, bias=False)
65
+ self.to_value = nn.Linear(context_dim, out_channels, bias=False)
66
+
67
+ self.output_layer = nn.Linear(out_channels, out_channels, bias=False)
68
+
69
+ def forward(self, x, context, context_mask=None):
70
+ query = rearrange(self.to_query(x), 'b n (h d) -> b h n d', h=self.num_heads)
71
+ key = rearrange(self.to_key(context), 'b n (h d) -> b h n d', h=self.num_heads)
72
+ value = rearrange(self.to_value(context), 'b n (h d) -> b h n d', h=self.num_heads)
73
+
74
+ attention_matrix = einsum('b h i d, b h j d -> b h i j', query, key) * self.scale
75
+ if exist(context_mask):
76
+ max_neg_value = -torch.finfo(attention_matrix.dtype).max
77
+ context_mask = rearrange(context_mask, 'b j -> b 1 1 j')
78
+ attention_matrix = attention_matrix.masked_fill(~context_mask, max_neg_value)
79
+ attention_matrix = attention_matrix.softmax(dim=-1)
80
+
81
+ out = einsum('b h i j, b h j d -> b h i d', attention_matrix, value)
82
+ out = rearrange(out, 'b h n d -> b n (h d)')
83
+ out = self.output_layer(out)
84
+ return out
Kandinsky-3/kandinsky3/model/unet.py ADDED
@@ -0,0 +1,516 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn, einsum
3
+ from einops import rearrange
4
+
5
+ from .nn import Identity, Attention, SinusoidalPosEmb, ConditionalGroupNorm
6
+ from .utils import exist, set_default_item, set_default_layer
7
+ import torch.nn.functional as F
8
+
9
+
10
+ class Block(nn.Module):
11
+
12
+ def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None):
13
+ super().__init__()
14
+ self.group_norm = ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim)
15
+ self.activation = nn.SiLU()
16
+ self.up_sample = set_default_layer(
17
+ exist(up_resolution) and up_resolution,
18
+ nn.ConvTranspose2d, (in_channels, in_channels), {'kernel_size': 2, 'stride': 2}
19
+ )
20
+ padding = set_default_item(kernel_size == 1, 0, 1)
21
+ self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding)
22
+ self.down_sample = set_default_layer(
23
+ exist(up_resolution) and not up_resolution,
24
+ nn.Conv2d, (out_channels, out_channels), {'kernel_size': 2, 'stride': 2}
25
+ )
26
+
27
+ def forward(self, x, time_embed):
28
+ x = self.group_norm(x, time_embed)
29
+ x = self.activation(x)
30
+ x = self.up_sample(x)
31
+ x = self.projection(x)
32
+ x = self.down_sample(x)
33
+ return x
34
+
35
+
36
+ class ResNetBlock(nn.Module):
37
+
38
+ def __init__(
39
+ self, in_channels, out_channels, time_embed_dim, norm_groups=32, compression_ratio=2, up_resolutions=4*[None]
40
+ ):
41
+ super().__init__()
42
+ kernel_sizes = [1, 3, 3, 1]
43
+ hidden_channel = max(in_channels, out_channels) // compression_ratio
44
+ hidden_channels = [(in_channels, hidden_channel)] + [(hidden_channel, hidden_channel)] * 2 + [(hidden_channel, out_channels)]
45
+ self.resnet_blocks = nn.ModuleList([
46
+ Block(in_channel, out_channel, time_embed_dim, kernel_size, norm_groups, up_resolution)
47
+ for (in_channel, out_channel), kernel_size, up_resolution in zip(hidden_channels, kernel_sizes, up_resolutions)
48
+ ])
49
+
50
+ self.shortcut_up_sample = set_default_layer(
51
+ True in up_resolutions,
52
+ nn.ConvTranspose2d, (in_channels, in_channels), {'kernel_size': 2, 'stride': 2}
53
+ )
54
+ self.shortcut_projection = set_default_layer(
55
+ in_channels != out_channels,
56
+ nn.Conv2d, (in_channels, out_channels), {'kernel_size': 1}
57
+ )
58
+ self.shortcut_down_sample = set_default_layer(
59
+ False in up_resolutions,
60
+ nn.Conv2d, (out_channels, out_channels), {'kernel_size': 2, 'stride': 2}
61
+ )
62
+
63
+ def forward(self, x, time_embed):
64
+ out = x
65
+ for resnet_block in self.resnet_blocks:
66
+ out = resnet_block(out, time_embed)
67
+
68
+ x = self.shortcut_up_sample(x)
69
+ x = self.shortcut_projection(x)
70
+ x = self.shortcut_down_sample(x)
71
+ x = x + out
72
+ return x
73
+
74
+
75
+ class AttentionPolling(nn.Module):
76
+
77
+ def __init__(self, num_channels, context_dim, head_dim=64):
78
+ super().__init__()
79
+ self.attention = Attention(context_dim, num_channels, context_dim, head_dim)
80
+
81
+ def forward(self, x, context, context_mask=None):
82
+ context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask)
83
+ return x + context.squeeze(1)
84
+
85
+
86
+ class AttentionBlock(nn.Module):
87
+
88
+ def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4):
89
+ super().__init__()
90
+ self.in_norm = ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
91
+ self.attention = Attention(num_channels, num_channels, context_dim or num_channels, head_dim)
92
+
93
+ hidden_channels = expansion_ratio * num_channels
94
+ self.out_norm = ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim)
95
+ self.feed_forward = nn.Sequential(
96
+ nn.Conv2d(num_channels, hidden_channels, kernel_size=1, bias=False),
97
+ nn.SiLU(),
98
+ nn.Conv2d(hidden_channels, num_channels, kernel_size=1, bias=False),
99
+ )
100
+
101
+ def forward(self, x, time_embed, context=None, context_mask=None):
102
+ height, width = x.shape[-2:]
103
+ out = self.in_norm(x, time_embed)
104
+ out = rearrange(out, 'b c h w -> b (h w) c', h=height, w=width)
105
+ context = set_default_item(exist(context), context, out)
106
+ out = self.attention(out, context, context_mask)
107
+ out = rearrange(out, 'b (h w) c -> b c h w', h=height, w=width)
108
+ x = x + out
109
+
110
+ out = self.out_norm(x, time_embed)
111
+ out = self.feed_forward(out)
112
+ x = x + out
113
+ return x
114
+
115
+
116
+ class DownSampleBlock(nn.Module):
117
+
118
+ def __init__(
119
+ self, in_channels, out_channels, time_embed_dim, context_dim=None,
120
+ num_blocks=3, groups=32, head_dim=64, expansion_ratio=4, compression_ratio=2,
121
+ down_sample=True, self_attention=True
122
+ ):
123
+ super().__init__()
124
+ self.self_attention_block = set_default_layer(
125
+ self_attention,
126
+ AttentionBlock,
127
+ (in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio),
128
+ layer_2=Identity
129
+ )
130
+
131
+ up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, set_default_item(down_sample, False), None]]
132
+ hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1)
133
+ self.resnet_attn_blocks = nn.ModuleList([
134
+ nn.ModuleList([
135
+ ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio),
136
+ set_default_layer(
137
+ exist(context_dim),
138
+ AttentionBlock,
139
+ (out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio),
140
+ layer_2=Identity
141
+ ),
142
+ ResNetBlock(out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution),
143
+ ]) for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions)
144
+ ])
145
+
146
+ def forward(self, x, time_embed, context=None, context_mask=None, control_net_residual=None):
147
+ x = self.self_attention_block(x, time_embed)
148
+ for in_resnet_block, attention, out_resnet_block in self.resnet_attn_blocks:
149
+ x = in_resnet_block(x, time_embed)
150
+ x = attention(x, time_embed, context, context_mask)
151
+ x = out_resnet_block(x, time_embed)
152
+ return x
153
+
154
+
155
+ class UpSampleBlock(nn.Module):
156
+
157
+ def __init__(
158
+ self, in_channels, cat_dim, out_channels, time_embed_dim, context_dim=None,
159
+ num_blocks=3, groups=32, head_dim=64, expansion_ratio=4, compression_ratio=2,
160
+ up_sample=True, self_attention=True
161
+ ):
162
+ super().__init__()
163
+ up_resolutions = [[None, set_default_item(up_sample, True), None, None]] + [[None] * 4] * (num_blocks - 1)
164
+ hidden_channels = [(in_channels + cat_dim, in_channels)] + [(in_channels, in_channels)] * (num_blocks - 2) + [(in_channels, out_channels)]
165
+ self.resnet_attn_blocks = nn.ModuleList([
166
+ nn.ModuleList([
167
+ ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution),
168
+ set_default_layer(
169
+ exist(context_dim),
170
+ AttentionBlock,
171
+ (in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio),
172
+ layer_2=Identity
173
+ ),
174
+ ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio),
175
+ ]) for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions)
176
+ ])
177
+
178
+ self.self_attention_block = set_default_layer(
179
+ self_attention,
180
+ AttentionBlock,
181
+ (out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio),
182
+ layer_2=Identity
183
+ )
184
+
185
+ def forward(self, x, time_embed, context=None, context_mask=None):
186
+ for in_resnet_block, attention, out_resnet_block in self.resnet_attn_blocks:
187
+ x = in_resnet_block(x, time_embed)
188
+ x = attention(x, time_embed, context, context_mask)
189
+ x = out_resnet_block(x, time_embed)
190
+ x = self.self_attention_block(x, time_embed)
191
+ return x
192
+
193
+ class ControlNetModel(nn.Module):
194
+ def __init__(self,
195
+ model_channels,
196
+ init_channels=None,
197
+ num_channels=3,
198
+ out_channels=4,
199
+ time_embed_dim=None,
200
+ context_dim=None,
201
+ groups=32,
202
+ head_dim=64,
203
+ expansion_ratio=4,
204
+ compression_ratio=2,
205
+ dim_mult=(1, 2, 4, 8),
206
+ num_blocks=(3, 3, 3, 3),
207
+ add_cross_attention=(False, True, True, True),
208
+ add_self_attention=(False, True, True, True)
209
+ ):
210
+ super().__init__()
211
+ init_channels = init_channels or model_channels
212
+ self.to_time_embed = nn.Sequential(
213
+ SinusoidalPosEmb(init_channels),
214
+ nn.Linear(init_channels, time_embed_dim),
215
+ nn.SiLU(),
216
+ nn.Linear(time_embed_dim, time_embed_dim)
217
+ )
218
+ self.feature_pooling = AttentionPolling(time_embed_dim, context_dim, head_dim)
219
+
220
+ self.in_layer = nn.Conv2d(num_channels, init_channels, kernel_size=3, padding=1)
221
+
222
+ hidden_dims = [init_channels, *map(lambda mult: model_channels * mult, dim_mult)]
223
+ in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:]))
224
+ text_dims = [set_default_item(is_exist, context_dim) for is_exist in add_cross_attention]
225
+ layer_params = [num_blocks, text_dims, add_self_attention]
226
+ rev_layer_params = map(reversed, layer_params)
227
+
228
+ cat_dims = []
229
+ self.num_levels = len(in_out_dims)
230
+ self.down_samples = nn.ModuleList([])
231
+ for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate(zip(in_out_dims, *layer_params)):
232
+ down_sample = level != (self.num_levels - 1)
233
+ cat_dims.append(set_default_item(level != (self.num_levels - 1), out_dim, 0))
234
+ self.down_samples.append(
235
+ DownSampleBlock(
236
+ in_dim, out_dim, time_embed_dim, text_dim, res_block_num, groups, head_dim, expansion_ratio,
237
+ compression_ratio, down_sample, self_attention
238
+ )
239
+ )
240
+
241
+ def forward(self, x, time, context=None, context_mask=None):
242
+ time_embed = self.to_time_embed(time)
243
+ if exist(context):
244
+ time_embed = self.feature_pooling(time_embed, context, context_mask)
245
+
246
+ hidden_states = []
247
+ x = self.in_layer(x)
248
+ for level, down_sample in enumerate(self.down_samples):
249
+ x = down_sample(x, time_embed, context, context_mask)
250
+ if level != self.num_levels - 1:
251
+ hidden_states.append(x)
252
+ return hidden_states
253
+
254
+ class UNet(nn.Module):
255
+
256
+ def __init__(self,
257
+ model_channels,
258
+ init_channels=None,
259
+ num_channels=3,
260
+ out_channels=4,
261
+ time_embed_dim=None,
262
+ context_dim=None,
263
+ groups=32,
264
+ head_dim=64,
265
+ expansion_ratio=4,
266
+ compression_ratio=2,
267
+ dim_mult=(1, 2, 4, 8),
268
+ num_blocks=(3, 3, 3, 3),
269
+ add_cross_attention=(False, True, True, True),
270
+ add_self_attention=(False, True, True, True),
271
+ *args,
272
+ **kwargs,
273
+ ):
274
+ super().__init__()
275
+ init_channels = init_channels or model_channels
276
+ self.to_time_embed = nn.Sequential(
277
+ SinusoidalPosEmb(init_channels),
278
+ nn.Linear(init_channels, time_embed_dim),
279
+ nn.SiLU(),
280
+ nn.Linear(time_embed_dim, time_embed_dim)
281
+ )
282
+ self.feature_pooling = AttentionPolling(time_embed_dim, context_dim, head_dim)
283
+
284
+ self.in_layer = nn.Conv2d(num_channels, init_channels, kernel_size=3, padding=1)
285
+
286
+ hidden_dims = [init_channels, *map(lambda mult: model_channels * mult, dim_mult)]
287
+ in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:]))
288
+ text_dims = [set_default_item(is_exist, context_dim) for is_exist in add_cross_attention]
289
+ layer_params = [num_blocks, text_dims, add_self_attention]
290
+ rev_layer_params = map(reversed, layer_params)
291
+
292
+ cat_dims = []
293
+ self.num_levels = len(in_out_dims)
294
+ self.down_samples = nn.ModuleList([])
295
+ for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate(zip(in_out_dims, *layer_params)):
296
+ down_sample = level != (self.num_levels - 1)
297
+ cat_dims.append(set_default_item(level != (self.num_levels - 1), out_dim, 0))
298
+ self.down_samples.append(
299
+ DownSampleBlock(
300
+ in_dim, out_dim, time_embed_dim, text_dim, res_block_num, groups, head_dim, expansion_ratio,
301
+ compression_ratio, down_sample, self_attention
302
+ )
303
+ )
304
+
305
+ self.up_samples = nn.ModuleList([])
306
+ for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate(zip(reversed(in_out_dims), *rev_layer_params)):
307
+ up_sample = level != 0
308
+ self.up_samples.append(
309
+ UpSampleBlock(
310
+ in_dim, cat_dims.pop(), out_dim, time_embed_dim, text_dim, res_block_num, groups, head_dim,
311
+ expansion_ratio, compression_ratio, up_sample, self_attention
312
+ )
313
+ )
314
+
315
+ self.out_layer = nn.Sequential(
316
+ nn.GroupNorm(groups, init_channels),
317
+ nn.SiLU(),
318
+ nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1)
319
+ )
320
+
321
+ self.control_net = None
322
+
323
+ def forward(self, x, time, context=None, context_mask=None, control_net_residual=None):
324
+ time_embed = self.to_time_embed(time)
325
+ if exist(context):
326
+ time_embed = self.feature_pooling(time_embed, context, context_mask)
327
+
328
+ hidden_states = []
329
+ x = self.in_layer(x)
330
+ for level, down_sample in enumerate(self.down_samples):
331
+ x = down_sample(x, time_embed, context, context_mask, control_net_residual)
332
+ if level != self.num_levels - 1:
333
+ hidden_states.append(x)
334
+ for level, up_sample in enumerate(self.up_samples):
335
+ if level != 0:
336
+ x = torch.cat([x, hidden_states.pop()], dim=1)
337
+ x = up_sample(x, time_embed, context, context_mask)
338
+ x = self.out_layer(x)
339
+ return x
340
+
341
+
342
+ class ControlNetModel(nn.Module):
343
+ def __init__(self,
344
+ model_channels,
345
+ init_channels=None,
346
+ num_channels=3,
347
+ out_channels=4,
348
+ time_embed_dim=None,
349
+ context_dim=None,
350
+ groups=32,
351
+ head_dim=64,
352
+ expansion_ratio=4,
353
+ compression_ratio=2,
354
+ dim_mult=(1, 2, 4, 8),
355
+ num_blocks=(3, 3, 3, 3),
356
+ add_cross_attention=(False, True, True, True),
357
+ add_self_attention=(False, True, True, True),
358
+ *args,
359
+ **kwargs,
360
+ ):
361
+ super().__init__()
362
+ init_channels = init_channels or model_channels
363
+ self.to_time_embed = nn.Sequential(
364
+ SinusoidalPosEmb(init_channels),
365
+ nn.Linear(init_channels, time_embed_dim),
366
+ nn.SiLU(),
367
+ nn.Linear(time_embed_dim, time_embed_dim)
368
+ )
369
+ self.feature_pooling = AttentionPolling(time_embed_dim, context_dim, head_dim)
370
+
371
+ self.in_layer = nn.Conv2d(num_channels, init_channels, kernel_size=3, padding=1)
372
+
373
+ hidden_dims = [init_channels, *map(lambda mult: model_channels * mult, dim_mult)]
374
+ in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:]))
375
+ text_dims = [set_default_item(is_exist, context_dim) for is_exist in add_cross_attention]
376
+ layer_params = [num_blocks, text_dims, add_self_attention]
377
+ rev_layer_params = map(reversed, layer_params)
378
+
379
+ cat_dims = []
380
+ self.num_levels = len(in_out_dims)
381
+ self.down_samples = nn.ModuleList([])
382
+ for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate(zip(in_out_dims, *layer_params)):
383
+ down_sample = level != (self.num_levels - 1)
384
+ cat_dims.append(set_default_item(level != (self.num_levels - 1), out_dim, 0))
385
+ self.down_samples.append(
386
+ DownSampleBlock(
387
+ in_dim, out_dim, time_embed_dim, text_dim, res_block_num, groups, head_dim, expansion_ratio,
388
+ compression_ratio, down_sample, self_attention
389
+ )
390
+ )
391
+
392
+ def forward(self, x, time, context=None, context_mask=None):
393
+ time_embed = self.to_time_embed(time)
394
+ if exist(context):
395
+ time_embed = self.feature_pooling(time_embed, context, context_mask)
396
+
397
+ hidden_states = []
398
+ x = self.in_layer(x)
399
+ for level, down_sample in enumerate(self.down_samples):
400
+ x = down_sample(x, time_embed, context, context_mask)
401
+ if level != self.num_levels - 1:
402
+ hidden_states.append(x)
403
+ return hidden_states
404
+
405
+ class ControlUNet(nn.Module):
406
+
407
+ def __init__(self,
408
+ model_channels,
409
+ init_channels=None,
410
+ num_channels=3,
411
+ out_channels=4,
412
+ time_embed_dim=None,
413
+ context_dim=None,
414
+ groups=32,
415
+ head_dim=64,
416
+ expansion_ratio=4,
417
+ compression_ratio=2,
418
+ dim_mult=(1, 2, 4, 8),
419
+ num_blocks=(3, 3, 3, 3),
420
+ add_cross_attention=(False, True, True, True),
421
+ add_self_attention=(False, True, True, True),
422
+ control_net_channels=5,
423
+ *args,
424
+ **kwargs,
425
+ ):
426
+ super().__init__()
427
+ init_channels = init_channels or model_channels
428
+ self.to_time_embed = nn.Sequential(
429
+ SinusoidalPosEmb(init_channels),
430
+ nn.Linear(init_channels, time_embed_dim),
431
+ nn.SiLU(),
432
+ nn.Linear(time_embed_dim, time_embed_dim)
433
+ )
434
+ self.feature_pooling = AttentionPolling(time_embed_dim, context_dim, head_dim)
435
+
436
+ self.in_layer = nn.Conv2d(num_channels, init_channels, kernel_size=3, padding=1)
437
+
438
+ hidden_dims = [init_channels, *map(lambda mult: model_channels * mult, dim_mult)]
439
+ in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:]))
440
+ text_dims = [set_default_item(is_exist, context_dim) for is_exist in add_cross_attention]
441
+ layer_params = [num_blocks, text_dims, add_self_attention]
442
+ rev_layer_params = map(reversed, layer_params)
443
+
444
+ cat_dims = []
445
+ self.num_levels = len(in_out_dims)
446
+ self.down_samples = nn.ModuleList([])
447
+ for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate(zip(in_out_dims, *layer_params)):
448
+ down_sample = level != (self.num_levels - 1)
449
+ cat_dims.append(set_default_item(level != (self.num_levels - 1), out_dim, 0))
450
+ self.down_samples.append(
451
+ DownSampleBlock(
452
+ in_dim, out_dim, time_embed_dim, text_dim, res_block_num, groups, head_dim, expansion_ratio,
453
+ compression_ratio, down_sample, self_attention
454
+ )
455
+ )
456
+
457
+ self.up_samples = nn.ModuleList([])
458
+ for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate(zip(reversed(in_out_dims), *rev_layer_params)):
459
+ up_sample = level != 0
460
+ self.up_samples.append(
461
+ UpSampleBlock(
462
+ in_dim, cat_dims.pop(), out_dim, time_embed_dim, text_dim, res_block_num, groups, head_dim,
463
+ expansion_ratio, compression_ratio, up_sample, self_attention
464
+ )
465
+ )
466
+
467
+ self.out_layer = nn.Sequential(
468
+ nn.GroupNorm(groups, init_channels),
469
+ nn.SiLU(),
470
+ nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1)
471
+ )
472
+
473
+ self.control_net = ControlNetModel(model_channels,
474
+ init_channels,
475
+ control_net_channels,
476
+ out_channels,
477
+ time_embed_dim,
478
+ context_dim,
479
+ groups,
480
+ head_dim,
481
+ expansion_ratio,
482
+ compression_ratio,
483
+ dim_mult,
484
+ num_blocks,
485
+ add_cross_attention,
486
+ add_self_attention)
487
+
488
+ def forward(self, x, time, context=None, context_mask=None, control_net_data=None):
489
+ time_embed = self.to_time_embed(time)
490
+ if exist(context):
491
+ time_embed = self.feature_pooling(time_embed, context, context_mask)
492
+
493
+ control_net_hiddens = self.control_net(control_net_data, time, context, context_mask)
494
+ hidden_states = []
495
+ x = self.in_layer(x)
496
+ for level, down_sample in enumerate(self.down_samples):
497
+ x = down_sample(x, time_embed, context, context_mask)
498
+ if level != self.num_levels - 1:
499
+ x += control_net_hiddens.pop(0)
500
+ hidden_states.append(x)
501
+ for level, up_sample in enumerate(self.up_samples):
502
+ if level != 0:
503
+ x = torch.cat([x, hidden_states.pop()], dim=1)
504
+ x = up_sample(x, time_embed, context, context_mask)
505
+ x = self.out_layer(x)
506
+ return x
507
+
508
+
509
+ def get_control_unet(conf):
510
+ unet = ControlUNet(**conf)
511
+ return unet
512
+
513
+
514
+ def get_unet(conf):
515
+ unet = UNet(**conf)
516
+ return unet
Kandinsky-3/kandinsky3/model/utils.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.nn import Identity
2
+ from einops import rearrange
3
+
4
+
5
+ def exist(item):
6
+ return item is not None
7
+
8
+
9
+ def set_default_item(condition, item_1, item_2=None):
10
+ if condition:
11
+ return item_1
12
+ else:
13
+ return item_2
14
+
15
+
16
+ def set_default_layer(condition, layer_1, args_1=[], kwargs_1={}, layer_2=Identity, args_2=[], kwargs_2={}):
17
+ if condition:
18
+ return layer_1(*args_1, **kwargs_1)
19
+ else:
20
+ return layer_2(*args_2, **kwargs_2)
21
+
22
+
23
+ def get_tensor_items(x, pos, broadcast_shape):
24
+ device = pos.device
25
+ bs = pos.shape[0]
26
+ ndims = len(broadcast_shape[1:])
27
+ x = x.cpu()[pos.cpu()]
28
+ return x.reshape(bs, *((1,) * ndims)).to(device)
29
+
30
+
31
+ def local_patching(x, height, width, group_size):
32
+ if group_size > 0:
33
+ x = rearrange(
34
+ x, 'b c (h g1) (w g2) -> b (h w) (g1 g2) c',
35
+ h=height//group_size, w=width//group_size, g1=group_size, g2=group_size
36
+ )
37
+ else:
38
+ x = rearrange(x, 'b c h w -> b (h w) c', h=height, w=width)
39
+ return x
40
+
41
+
42
+ def local_merge(x, height, width, group_size):
43
+ if group_size > 0:
44
+ x = rearrange(
45
+ x, 'b (h w) (g1 g2) c -> b c (h g1) (w g2)',
46
+ h=height//group_size, w=width//group_size, g1=group_size, g2=group_size
47
+ )
48
+ else:
49
+ x = rearrange(x, 'b (h w) c -> b c h w', h=height, w=width)
50
+ return x
51
+
52
+
53
+ def global_patching(x, height, width, group_size):
54
+ x = local_patching(x, height, width, height//group_size)
55
+ x = x.transpose(-2, -3)
56
+ return x
57
+
58
+
59
+ def global_merge(x, height, width, group_size):
60
+ x = x.transpose(-2, -3)
61
+ x = local_merge(x, height, width, height//group_size)
62
+ return x
Kandinsky-3/kandinsky3/movq.py ADDED
@@ -0,0 +1,431 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ import torch.nn as nn
4
+ import numpy as np
5
+ import torch.nn.functional as F
6
+
7
+ from .utils import freeze
8
+
9
+
10
+ def nonlinearity(x):
11
+ return x*torch.sigmoid(x)
12
+
13
+
14
+ class SpatialNorm(nn.Module):
15
+ def __init__(
16
+ self, f_channels, zq_channels=None, norm_layer=nn.GroupNorm, freeze_norm_layer=False, add_conv=False, **norm_layer_params
17
+ ):
18
+ super().__init__()
19
+ self.norm_layer = norm_layer(num_channels=f_channels, **norm_layer_params)
20
+ if zq_channels is not None:
21
+ if freeze_norm_layer:
22
+ for p in self.norm_layer.parameters:
23
+ p.requires_grad = False
24
+ self.add_conv = add_conv
25
+ if self.add_conv:
26
+ self.conv = nn.Conv2d(zq_channels, zq_channels, kernel_size=3, stride=1, padding=1)
27
+ self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
28
+ self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
29
+ def forward(self, f, zq=None):
30
+ norm_f = self.norm_layer(f)
31
+ if zq is not None:
32
+ f_size = f.shape[-2:]
33
+ zq = torch.nn.functional.interpolate(zq, size=f_size, mode="nearest")
34
+ if self.add_conv:
35
+ zq = self.conv(zq)
36
+ norm_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
37
+ return norm_f
38
+
39
+
40
+ def Normalize(in_channels, zq_ch=None, add_conv=None):
41
+ return SpatialNorm(
42
+ in_channels, zq_ch, norm_layer=nn.GroupNorm,
43
+ freeze_norm_layer=False, add_conv=add_conv, num_groups=32, eps=1e-6, affine=True
44
+ )
45
+
46
+
47
+ class Upsample(nn.Module):
48
+ def __init__(self, in_channels, with_conv):
49
+ super().__init__()
50
+ self.with_conv = with_conv
51
+ if self.with_conv:
52
+ self.conv = torch.nn.Conv2d(in_channels,
53
+ in_channels,
54
+ kernel_size=3,
55
+ stride=1,
56
+ padding=1)
57
+
58
+ def forward(self, x):
59
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
60
+ if self.with_conv:
61
+ x = self.conv(x)
62
+ return x
63
+
64
+
65
+ class Downsample(nn.Module):
66
+ def __init__(self, in_channels, with_conv):
67
+ super().__init__()
68
+ self.with_conv = with_conv
69
+ if self.with_conv:
70
+ self.conv = torch.nn.Conv2d(in_channels,
71
+ in_channels,
72
+ kernel_size=3,
73
+ stride=2,
74
+ padding=0)
75
+
76
+ def forward(self, x):
77
+ if self.with_conv:
78
+ pad = (0,1,0,1)
79
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
80
+ x = self.conv(x)
81
+ else:
82
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
83
+ return x
84
+
85
+
86
+ class ResnetBlock(nn.Module):
87
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
88
+ dropout, temb_channels=512, zq_ch=None, add_conv=False):
89
+ super().__init__()
90
+ self.in_channels = in_channels
91
+ out_channels = in_channels if out_channels is None else out_channels
92
+ self.out_channels = out_channels
93
+ self.use_conv_shortcut = conv_shortcut
94
+
95
+ self.norm1 = Normalize(in_channels, zq_ch, add_conv=add_conv)
96
+ self.conv1 = torch.nn.Conv2d(in_channels,
97
+ out_channels,
98
+ kernel_size=3,
99
+ stride=1,
100
+ padding=1)
101
+ if temb_channels > 0:
102
+ self.temb_proj = torch.nn.Linear(temb_channels,
103
+ out_channels)
104
+ self.norm2 = Normalize(out_channels, zq_ch, add_conv=add_conv)
105
+ self.dropout = torch.nn.Dropout(dropout)
106
+ self.conv2 = torch.nn.Conv2d(out_channels,
107
+ out_channels,
108
+ kernel_size=3,
109
+ stride=1,
110
+ padding=1)
111
+ if self.in_channels != self.out_channels:
112
+ if self.use_conv_shortcut:
113
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
114
+ out_channels,
115
+ kernel_size=3,
116
+ stride=1,
117
+ padding=1)
118
+ else:
119
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
120
+ out_channels,
121
+ kernel_size=1,
122
+ stride=1,
123
+ padding=0)
124
+
125
+ def forward(self, x, temb, zq=None):
126
+ h = x
127
+ h = self.norm1(h, zq)
128
+ h = nonlinearity(h)
129
+ h = self.conv1(h)
130
+
131
+ if temb is not None:
132
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
133
+
134
+ h = self.norm2(h, zq)
135
+ h = nonlinearity(h)
136
+ h = self.dropout(h)
137
+ h = self.conv2(h)
138
+
139
+ if self.in_channels != self.out_channels:
140
+ if self.use_conv_shortcut:
141
+ x = self.conv_shortcut(x)
142
+ else:
143
+ x = self.nin_shortcut(x)
144
+
145
+ return x+h
146
+
147
+
148
+ class AttnBlock(nn.Module):
149
+ def __init__(self, in_channels, zq_ch=None, add_conv=False):
150
+ super().__init__()
151
+ self.in_channels = in_channels
152
+
153
+ self.norm = Normalize(in_channels, zq_ch, add_conv=add_conv)
154
+ self.q = torch.nn.Conv2d(in_channels,
155
+ in_channels,
156
+ kernel_size=1,
157
+ stride=1,
158
+ padding=0)
159
+ self.k = torch.nn.Conv2d(in_channels,
160
+ in_channels,
161
+ kernel_size=1,
162
+ stride=1,
163
+ padding=0)
164
+ self.v = torch.nn.Conv2d(in_channels,
165
+ in_channels,
166
+ kernel_size=1,
167
+ stride=1,
168
+ padding=0)
169
+ self.proj_out = torch.nn.Conv2d(in_channels,
170
+ in_channels,
171
+ kernel_size=1,
172
+ stride=1,
173
+ padding=0)
174
+
175
+
176
+ def forward(self, x, zq=None):
177
+ h_ = x
178
+ h_ = self.norm(h_, zq)
179
+ q = self.q(h_)
180
+ k = self.k(h_)
181
+ v = self.v(h_)
182
+
183
+ # compute attention
184
+ b,c,h,w = q.shape
185
+ q = q.reshape(b,c,h*w)
186
+ q = q.permute(0,2,1) # b,hw,c
187
+ k = k.reshape(b,c,h*w) # b,c,hw
188
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
189
+ w_ = w_ * (int(c)**(-0.5))
190
+ w_ = torch.nn.functional.softmax(w_, dim=2)
191
+
192
+ # attend to values
193
+ v = v.reshape(b,c,h*w)
194
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
195
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
196
+ h_ = h_.reshape(b,c,h,w)
197
+
198
+ h_ = self.proj_out(h_)
199
+
200
+ return x+h_
201
+
202
+
203
+ class Encoder(nn.Module):
204
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
205
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
206
+ resolution, z_channels, double_z=True, **ignore_kwargs):
207
+ super().__init__()
208
+ self.ch = ch
209
+ self.temb_ch = 0
210
+ self.num_resolutions = len(ch_mult)
211
+ self.num_res_blocks = num_res_blocks
212
+ self.resolution = resolution
213
+ self.in_channels = in_channels
214
+
215
+ # downsampling
216
+ self.conv_in = torch.nn.Conv2d(in_channels,
217
+ self.ch,
218
+ kernel_size=3,
219
+ stride=1,
220
+ padding=1)
221
+
222
+ curr_res = resolution
223
+ in_ch_mult = (1,)+tuple(ch_mult)
224
+ self.down = nn.ModuleList()
225
+ for i_level in range(self.num_resolutions):
226
+ block = nn.ModuleList()
227
+ attn = nn.ModuleList()
228
+ block_in = ch*in_ch_mult[i_level]
229
+ block_out = ch*ch_mult[i_level]
230
+ for i_block in range(self.num_res_blocks):
231
+ block.append(ResnetBlock(in_channels=block_in,
232
+ out_channels=block_out,
233
+ temb_channels=self.temb_ch,
234
+ dropout=dropout))
235
+ block_in = block_out
236
+ if curr_res in attn_resolutions:
237
+ attn.append(AttnBlock(block_in))
238
+ down = nn.Module()
239
+ down.block = block
240
+ down.attn = attn
241
+ if i_level != self.num_resolutions-1:
242
+ down.downsample = Downsample(block_in, resamp_with_conv)
243
+ curr_res = curr_res // 2
244
+ self.down.append(down)
245
+
246
+ # middle
247
+ self.mid = nn.Module()
248
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
249
+ out_channels=block_in,
250
+ temb_channels=self.temb_ch,
251
+ dropout=dropout)
252
+ self.mid.attn_1 = AttnBlock(block_in)
253
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
254
+ out_channels=block_in,
255
+ temb_channels=self.temb_ch,
256
+ dropout=dropout)
257
+
258
+ # end
259
+ self.norm_out = Normalize(block_in)
260
+ self.conv_out = torch.nn.Conv2d(block_in,
261
+ 2*z_channels if double_z else z_channels,
262
+ kernel_size=3,
263
+ stride=1,
264
+ padding=1)
265
+
266
+
267
+ def forward(self, x):
268
+ temb = None
269
+
270
+ # downsampling
271
+ hs = [self.conv_in(x)]
272
+ for i_level in range(self.num_resolutions):
273
+ for i_block in range(self.num_res_blocks):
274
+ h = self.down[i_level].block[i_block](hs[-1], temb)
275
+ if len(self.down[i_level].attn) > 0:
276
+ h = self.down[i_level].attn[i_block](h)
277
+ hs.append(h)
278
+ if i_level != self.num_resolutions-1:
279
+ hs.append(self.down[i_level].downsample(hs[-1]))
280
+
281
+ # middle
282
+ h = hs[-1]
283
+ h = self.mid.block_1(h, temb)
284
+ h = self.mid.attn_1(h)
285
+ h = self.mid.block_2(h, temb)
286
+
287
+ # end
288
+ h = self.norm_out(h)
289
+ h = nonlinearity(h)
290
+ h = self.conv_out(h)
291
+ return h
292
+
293
+
294
+ class Decoder(nn.Module):
295
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
296
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
297
+ resolution, z_channels, give_pre_end=False, zq_ch=None, add_conv=False, **ignorekwargs):
298
+ super().__init__()
299
+ self.ch = ch
300
+ self.temb_ch = 0
301
+ self.num_resolutions = len(ch_mult)
302
+ self.num_res_blocks = num_res_blocks
303
+ self.resolution = resolution
304
+ self.in_channels = in_channels
305
+ self.give_pre_end = give_pre_end
306
+
307
+ # compute in_ch_mult, block_in and curr_res at lowest res
308
+ in_ch_mult = (1,)+tuple(ch_mult)
309
+ block_in = ch*ch_mult[self.num_resolutions-1]
310
+ curr_res = resolution // 2**(self.num_resolutions-1)
311
+ self.z_shape = (1,z_channels,curr_res,curr_res)
312
+
313
+ # z to block_in
314
+ self.conv_in = torch.nn.Conv2d(z_channels,
315
+ block_in,
316
+ kernel_size=3,
317
+ stride=1,
318
+ padding=1)
319
+
320
+ # middle
321
+ self.mid = nn.Module()
322
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
323
+ out_channels=block_in,
324
+ temb_channels=self.temb_ch,
325
+ dropout=dropout,
326
+ zq_ch=zq_ch,
327
+ add_conv=add_conv)
328
+ self.mid.attn_1 = AttnBlock(block_in, zq_ch, add_conv=add_conv)
329
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
330
+ out_channels=block_in,
331
+ temb_channels=self.temb_ch,
332
+ dropout=dropout,
333
+ zq_ch=zq_ch,
334
+ add_conv=add_conv)
335
+
336
+ # upsampling
337
+ self.up = nn.ModuleList()
338
+ for i_level in reversed(range(self.num_resolutions)):
339
+ block = nn.ModuleList()
340
+ attn = nn.ModuleList()
341
+ block_out = ch*ch_mult[i_level]
342
+ for i_block in range(self.num_res_blocks+1):
343
+ block.append(ResnetBlock(in_channels=block_in,
344
+ out_channels=block_out,
345
+ temb_channels=self.temb_ch,
346
+ dropout=dropout,
347
+ zq_ch=zq_ch,
348
+ add_conv=add_conv))
349
+ block_in = block_out
350
+ if curr_res in attn_resolutions:
351
+ attn.append(AttnBlock(block_in, zq_ch, add_conv=add_conv))
352
+ up = nn.Module()
353
+ up.block = block
354
+ up.attn = attn
355
+ if i_level != 0:
356
+ up.upsample = Upsample(block_in, resamp_with_conv)
357
+ curr_res = curr_res * 2
358
+ self.up.insert(0, up) # prepend to get consistent order
359
+
360
+ # end
361
+ self.norm_out = Normalize(block_in, zq_ch, add_conv=add_conv)
362
+ self.conv_out = torch.nn.Conv2d(block_in,
363
+ out_ch,
364
+ kernel_size=3,
365
+ stride=1,
366
+ padding=1)
367
+
368
+ def forward(self, z, zq):
369
+ #assert z.shape[1:] == self.z_shape[1:]
370
+ self.last_z_shape = z.shape
371
+
372
+ # timestep embedding
373
+ temb = None
374
+
375
+ # z to block_in
376
+ h = self.conv_in(z)
377
+
378
+ # middle
379
+ h = self.mid.block_1(h, temb, zq)
380
+ h = self.mid.attn_1(h, zq)
381
+ h = self.mid.block_2(h, temb, zq)
382
+
383
+ # upsampling
384
+ for i_level in reversed(range(self.num_resolutions)):
385
+ for i_block in range(self.num_res_blocks+1):
386
+ h = self.up[i_level].block[i_block](h, temb, zq)
387
+ if len(self.up[i_level].attn) > 0:
388
+ h = self.up[i_level].attn[i_block](h, zq)
389
+ if i_level != 0:
390
+ h = self.up[i_level].upsample(h)
391
+
392
+ # end
393
+ if self.give_pre_end:
394
+ return h
395
+
396
+ h = self.norm_out(h, zq)
397
+ h = nonlinearity(h)
398
+ h = self.conv_out(h)
399
+ return h
400
+
401
+
402
+ class MoVQ(nn.Module):
403
+
404
+ def __init__(self, generator_params):
405
+ super().__init__()
406
+ z_channels = generator_params["z_channels"]
407
+ self.encoder = Encoder(**generator_params)
408
+ self.quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1)
409
+ self.post_quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1)
410
+ self.decoder = Decoder(zq_ch=z_channels, **generator_params)
411
+
412
+ @torch.no_grad()
413
+ def encode(self, x):
414
+ h = self.encoder(x)
415
+ h = self.quant_conv(h)
416
+ return h
417
+
418
+ @torch.no_grad()
419
+ def decode(self, quant):
420
+ decoder_input = self.post_quant_conv(quant)
421
+ decoded = self.decoder(decoder_input, quant)
422
+ return decoded
423
+
424
+
425
+ def get_vae(conf):
426
+ movq = MoVQ(conf.params)
427
+ if conf.checkpoint is not None:
428
+ movq_state_dict = torch.load(conf.checkpoint)
429
+ movq.load_state_dict(movq_state_dict)
430
+ movq = freeze(movq)
431
+ return movq
Kandinsky-3/kandinsky3/setup.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from setuptools import setup
2
+
3
+ setup(
4
+ name="kandinsky3",
5
+ packages=[
6
+ "kandinsky3",
7
+ "kandinsky3/model"
8
+ ],
9
+ install_requires=[
10
+ "timm",
11
+ "torch==1.10.1+cu111",
12
+ "torchvision==0.11.2+cu111",
13
+ "torchaudio==0.10.1",
14
+ "pytorch_lightning==1.7.5",
15
+ "transformers",
16
+ "accelerate",
17
+ "diffusers",
18
+ "setuptools==59.5.0",
19
+ "omegaconf",
20
+ "datasets",
21
+ "einops",
22
+ "webdataset",
23
+ "fsspec",
24
+ "s3fs",
25
+ "hydra-core",
26
+ "scikit-image",
27
+ "matplotlib",
28
+ "wandb",
29
+ "albumentations",
30
+ "bezier",
31
+ "scipy",
32
+ "Pillow",
33
+ "tqdm",
34
+ "huggingface_hub"
35
+
36
+ ],
37
+ author="",
38
+ )
Kandinsky-3/kandinsky3/t2i_pipeline.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Union, List
2
+ import PIL
3
+
4
+ import torch
5
+ import torchvision.transforms as T
6
+ from einops import repeat
7
+
8
+ from kandinsky3.model.unet import UNet
9
+ from kandinsky3.movq import MoVQ
10
+ from kandinsky3.condition_encoders import T5TextConditionEncoder
11
+ from kandinsky3.condition_processors import T5TextConditionProcessor
12
+ from kandinsky3.model.diffusion import BaseDiffusion, get_named_beta_schedule
13
+
14
+
15
+ class Kandinsky3T2IPipeline:
16
+
17
+ def __init__(
18
+ self,
19
+ device_map: Union[str, torch.device, dict],
20
+ dtype_map: Union[str, torch.dtype, dict],
21
+ unet: UNet,
22
+ null_embedding: torch.Tensor,
23
+ t5_processor: T5TextConditionProcessor,
24
+ t5_encoder: T5TextConditionEncoder,
25
+ movq: MoVQ,
26
+ gan: bool,
27
+ ):
28
+ self.device_map = device_map
29
+ self.dtype_map = dtype_map
30
+ self.to_pil = T.ToPILImage()
31
+
32
+ self.unet = unet
33
+ self.null_embedding = null_embedding
34
+ self.t5_processor = t5_processor
35
+ self.t5_encoder = t5_encoder
36
+ self.movq = movq
37
+
38
+ self.gan = gan
39
+
40
+ def __call__(
41
+ self,
42
+ text: str,
43
+ negative_text: str = None,
44
+ images_num: int = 1,
45
+ bs: int = 1,
46
+ width: int = 1024,
47
+ height: int = 1024,
48
+ guidance_scale: float = 3.0,
49
+ steps: int = 50,
50
+ eta: float = 1.0
51
+ ) -> List[PIL.Image.Image]:
52
+
53
+ betas = get_named_beta_schedule('cosine', 1000)
54
+ base_diffusion = BaseDiffusion(betas, 0.99)
55
+ times = list(range(999, 0, -1000 // steps))
56
+ if self.gan:
57
+ times = list(range(979, 0, -250))
58
+
59
+ condition_model_input, negative_condition_model_input = self.t5_processor.encode(text, negative_text)
60
+ for input_type in condition_model_input:
61
+ condition_model_input[input_type] = condition_model_input[input_type][None].to(
62
+ self.device_map['text_encoder']
63
+ )
64
+
65
+ if negative_condition_model_input is not None:
66
+ for input_type in negative_condition_model_input:
67
+ negative_condition_model_input[input_type] = negative_condition_model_input[input_type][None].to(
68
+ self.device_map['text_encoder']
69
+ )
70
+
71
+ pil_images = []
72
+ with torch.no_grad():
73
+ with torch.cuda.amp.autocast(dtype=self.dtype_map['text_encoder']):
74
+ context, context_mask = self.t5_encoder(condition_model_input)
75
+ if negative_condition_model_input is not None:
76
+ negative_context, negative_context_mask = self.t5_encoder(negative_condition_model_input)
77
+ else:
78
+ negative_context, negative_context_mask = None, None
79
+
80
+ k, m = images_num // bs, images_num % bs
81
+ for minibatch in [bs] * k + [m]:
82
+ if minibatch == 0:
83
+ continue
84
+ bs_context = repeat(context, '1 n d -> b n d', b=minibatch)
85
+ bs_context_mask = repeat(context_mask, '1 n -> b n', b=minibatch)
86
+ if negative_context is not None:
87
+ bs_negative_context = repeat(negative_context, '1 n d -> b n d', b=minibatch)
88
+ bs_negative_context_mask = repeat(negative_context_mask, '1 n -> b n', b=minibatch)
89
+ else:
90
+ bs_negative_context, bs_negative_context_mask = None, None
91
+
92
+ with torch.cuda.amp.autocast(dtype=self.dtype_map['unet']):
93
+ images = base_diffusion.p_sample_loop(
94
+ self.unet, (minibatch, 4, height // 8, width // 8), times, self.device_map['unet'],
95
+ bs_context, bs_context_mask, self.null_embedding, guidance_scale, eta,
96
+ negative_context=bs_negative_context, negative_context_mask=bs_negative_context_mask,
97
+ gan=self.gan
98
+ )
99
+
100
+ with torch.cuda.amp.autocast(dtype=self.dtype_map['movq']):
101
+ images = torch.cat([self.movq.decode(image) for image in images.chunk(2)])
102
+ images = torch.clip((images + 1.) / 2., 0., 1.)
103
+ for images_chunk in images.chunk(1):
104
+ pil_images += [self.to_pil(image) for image in images_chunk]
105
+
106
+ return pil_images
Kandinsky-3/kandinsky3/utils.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from omegaconf import OmegaConf
2
+ import numpy as np
3
+ from scipy import ndimage
4
+ import torch.nn as nn
5
+ from skimage.transform import resize
6
+
7
+
8
+ def load_conf(config_path):
9
+ conf = OmegaConf.load(config_path)
10
+ conf.data.tokens_length = conf.common.tokens_length
11
+ conf.data.processor_names = conf.model.encoders.model_names
12
+ conf.data.dataset.seed = conf.common.seed
13
+ conf.data.dataset.image_size = conf.common.image_size
14
+
15
+ conf.trainer.trainer_params.max_steps = conf.common.train_steps
16
+ conf.scheduler.params.total_steps = conf.common.train_steps
17
+ conf.logger.tensorboard.name = conf.common.experiment_name
18
+
19
+ conf.model.encoders.context_dim = conf.model.unet_params.context_dim
20
+ return conf
21
+
22
+
23
+ def freeze(model):
24
+ for p in model.parameters():
25
+ p.requires_grad = False
26
+ return model
27
+
28
+ def unfreeze(model):
29
+ for p in model.parameters():
30
+ p.requires_grad = True
31
+ return model
32
+
33
+ def zero_module(module):
34
+ for p in module.parameters():
35
+ nn.init.zeros_(p)
36
+ return module
37
+
38
+ def resize_mask_for_diffusion(mask):
39
+ reduce_factor = max(1, (mask.size / 1024**2)**0.5)
40
+ resized_mask = resize(
41
+ mask,
42
+ (
43
+ (round(mask.shape[0] / reduce_factor) // 64) * 64,
44
+ (round(mask.shape[1] / reduce_factor) // 64) * 64
45
+ ),
46
+ preserve_range=True,
47
+ anti_aliasing=False
48
+ )
49
+
50
+ return resized_mask
51
+
52
+ def resize_image_for_diffusion(image):
53
+ reduce_factor = max(1, (image.size[0] * image.size[1] / 1024**2)**0.5)
54
+ image = image.resize((
55
+ (round(image.size[0] / reduce_factor) // 64) * 64, (round(image.size[1] / reduce_factor) // 64) * 64
56
+ ))
57
+
58
+ return image
59
+
60
+ def prepare_mask(mask):
61
+ ker = np.array([[1, 1, 1, 1, 1],
62
+ [1, 5, 5, 5, 1],
63
+ [1, 5, 44, 5, 1],
64
+ [1, 5, 5, 5, 1],
65
+ [1, 1, 1, 1, 1]]) / 100
66
+ out = ndimage.convolve(mask, ker)
67
+ out = ndimage.convolve(out, ker)
68
+ out = ndimage.convolve(out, ker)
69
+
70
+ mask = (out > 0).astype(int)
71
+ return mask
Kandinsky-3/requirements.txt ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ timm
2
+
3
+ pytorch_lightning==1.7.5
4
+ transformers
5
+ accelerate
6
+ diffusers
7
+ setuptools==59.5.0
8
+ omegaconf
9
+ datasets
10
+ einops
11
+ webdataset
12
+ fsspec
13
+ s3fs
14
+ hydra-core
15
+ scikit-image
16
+ matplotlib
17
+ wandb
18
+ albumentations
19
+ bezier
20
+ scipy
21
+ Pillow
22
+ tqdm
23
+ huggingface_hub
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Said Azizov
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,13 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
- title: Slides Generaror
3
- emoji: 🏆
4
- colorFrom: gray
5
- colorTo: pink
6
- sdk: gradio
7
- sdk_version: 4.44.0
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # README
3
+
4
+ ## Overview
5
+
6
+ This project generates a PowerPoint presentation based on user-provided descriptions. It leverages language models to generate text content and an image generation API to create images for the slides. The architecture is modular, allowing for easy extension and customization of the text and image generation components.
7
+
8
+ ## How to Use
9
+
10
+ ### Prerequisites
11
+
12
+ - Python 3.10 or higher
13
+ - Required Python packages (listed in `requirements.txt`)
14
+
15
+ ### Setup
16
+
17
+ 1. **Clone the repository**:
18
+
19
+ ```bash
20
+ git clone --recurse-submodules https://github.com/ai-forever/presentations.git
21
+ cd presentations
22
+ ```
23
+
24
+ 2. **Install dependencies**:
25
+
26
+ ```bash
27
+ pip install -r requirements.txt
28
+ ```
29
+
30
+ 3. **Create a .env file** in the root directory with GigaChat credentials:
31
+
32
+ Here is the [documentation](https://developers.sber.ru/portal/products/gigachat-api) on how to get access token.
33
+
34
+ ```plaintext
35
+ AUTH_TOKEN=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
36
+ COOKIE=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
37
+ ```
38
+
39
+
40
+ 4. **Run the FastAPI server** for the image generation API:
41
+
42
+ ```bash
43
+ python src/kandinsky.py
44
+ ```
45
+
46
+ ### Running the Script
47
+
48
+ To generate a presentation, use the following command:
49
+
50
+ ```bash
51
+ python main.py -d "Description of the presentation" -l 'en'
52
+ ```
53
+
54
+ This will generate a presentation based on the provided description and save it in the `logs` directory with a timestamp.
55
+
56
+ ## Examples
57
+
58
+ ```bash
59
+ python main.py -d "Сгенерируй презентацию про планеты солнечной системы" -l 'ru'
60
+ ```
61
+
62
+ ```bash
63
+ python main.py -d "Generate presentation about planets of Solar system" -l 'en'
64
+ ```
65
+
66
+ This command will create a presentation on the topic "Planets of the Solar System" using the configured text and image generation functions.
67
+
68
+ ## Architecture
69
+
70
+ ### Main Components
71
+
72
+ 1. **main.py**: The entry point of the application. It parses command-line arguments, initializes required components, and orchestrates the presentation generation process.
73
+
74
+ 2. **Font Class (src/font.py)**: Manages fonts used in the presentation. It can select a random font with basic and bold styles and provide paths to various font styles (basic, bold, italic, and italic bold).
75
+
76
+ 3. **Presentation Generation Functions (src/constructor.py)**: Functions that generate different types of slides in the presentation. They handle the layout, font settings, and placement of text and images.
77
+
78
+ 4. **Text Generation (src/gigachat.py)**: Contains the `giga_generate` function, which generates text based on a given prompt.
79
+
80
+ 5. **Image Generation (src/kandinsky.py)**: Includes the `api_k31_generate` function, which generates images based on a prompt using an external API. Additionally, it provides a FastAPI server for the image generation API.
81
+
82
+ 6. **Prompt Configuration (src/prompt_configs.py)**: Defines the structure of prompts used for generating titles, text, images, and backgrounds for slides.
83
+
84
+ ### How It Works
85
+
86
+ 1. **Initialization**:
87
+ - `main.py` parses command-line arguments to get the presentation description.
88
+ - It initializes the `Font` class with the directory containing font files and sets a random font.
89
+
90
+ 2. **Prompt Configuration**:
91
+ - The `ru_gigachat_config` defines the structure and content of prompts used for generating slide components (titles, text, images, backgrounds).
92
+
93
+ 3. **Text and Image Generation**:
94
+ - The `giga_generate` function generates text based on the provided description.
95
+ - The `api_k31_generate` function generates images based on prompts using the FastAPI server.
96
+
97
+ 4. **Slide Generation**:
98
+ - The `generate_presentation` function orchestrates the creation of slides by calling appropriate functions to generate text and images, and then formats them into slides.
99
+
100
+ ## Extending the Project
101
+
102
+ ### Adding New Font Styles
103
+
104
+ To add new font styles, place the font files in the `fonts` directory and update the `Font` class if necessary to recognize the new styles.
105
+
106
+ ### Changing Text Generation
107
+
108
+ To use a different text generation function, replace the `giga_generate` function from `src/gigachat.py` or add a new function and update the call in `main.py`.
109
+
110
+ ### Changing Image Generation
111
+
112
+ To use a different image generation API, modify the `api_k31_generate` function in `src/kandinsky.py` or add a new function and update the call in `main.py`.
113
+
114
+ ## Acknowledgements
115
+
116
+ This project leverages the `python-pptx` library for PowerPoint generation, PIL for image processing, and other Python libraries for various functionalities. The text and image generation models are based on external APIs and language models.
117
+
118
  ---
 
 
 
 
 
 
 
 
 
 
119
 
120
+ Feel free to reach out with any questions or suggestions!
121
+
122
+ ## Authors
123
+
124
+ + Said Azizov: [Github](https://github.com/stazizov), [Blog](https://t.me/said_azizau)
125
+
126
+ ## Citation
127
+
128
+ ```
129
+ @misc{arkhipkin2023kandinsky,
130
+ title={Kandinsky 3.0 Technical Report},
131
+ author={Vladimir Arkhipkin and Andrei Filatov and Viacheslav Vasilev and Anastasia Maltseva and Said Azizov and Igor Pavlov and Julia Agafonova and Andrey Kuznetsov and Denis Dimitrov},
132
+ year={2023},
133
+ eprint={2312.03511},
134
+ archivePrefix={arXiv},
135
+ primaryClass={cs.CV}
136
+ }
137
+ ```
app.py CHANGED
@@ -1,7 +1,95 @@
1
  import gradio as gr
 
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import time
3
+ from src.constructor import generate_presentation
4
+ from src.prompt_configs import en_gigachat_config, ru_gigachat_config
5
+ from src.gigachat import giga_generate
6
+ from src.kandinsky import api_k31_generate
7
+ from src.font import Font
8
 
9
+ logs_dir = "logs"
10
+ fonts_dir = "fonts"
11
 
12
+ def create_presentation(description: str, language: str):
13
+ # Select the appropriate prompt configuration based on the selected language
14
+ if language == "English":
15
+ prompt_config = en_gigachat_config
16
+ elif language == "Русский":
17
+ prompt_config = ru_gigachat_config
18
+ else:
19
+ # set default to prevent interruptions in unexpected scenario
20
+ prompt_config = en_gigachat_config
21
+
22
+ font = Font(fonts_dir)
23
+ font.set_random_font()
24
+
25
+ output_dir = f'{logs_dir}/{int(time.time())}'
26
+
27
+ generate_presentation(
28
+ llm_generate=giga_generate,
29
+ generate_image=api_k31_generate,
30
+ prompt_config=prompt_config,
31
+ description=description,
32
+ font=font,
33
+ output_dir=output_dir,
34
+ )
35
+
36
+ filename = f'{output_dir}/presentation.pptx'
37
+
38
+ return filename
39
+
40
+ # Updated examples to include language selection
41
+ examples = [
42
+ ["Generate a presentation on economics, 7 slides", "English"],
43
+ ["Сгенерируйте презентацию по экономике, 7 слайдов", "Русский"],
44
+ ["Create a presentation on climate change, 6 slides", "English"],
45
+ ["Создайте презентацию об изменении климата, 6 слайдов", "Русский"],
46
+ ["Create a presentation on artificial intelligence, 8 slides", "English"],
47
+ ["Создайте презентацию об искусственном интеллекте, 8 слайдов", "Русский"],
48
+ ["Design a presentation on space exploration, 10 slides", "English"],
49
+ ["Разработайте презентацию о космических исследованиях, 10 слайдов", "Русский"],
50
+ ["Prepare a presentation on the future of renewable energy, 7 slides", "English"],
51
+ ["Подготовьте презентацию о будущем возобновляемой энергетики, 7 слайдов", "Русский"],
52
+ ["Develop a presentation on the history of art movements, 9 slides", "English"],
53
+ ["Разработайте презентацию о истории художественных движений, 9 слайдов", "Русский"],
54
+ ["Generate a presentation on the impact of social media, 6 slides", "English"],
55
+ ["Сгенерируйте презентацию о влиянии социальных сетей, 6 слайдов", "Русский"],
56
+ ["Create a presentation on sustainable urban planning, 8 slides", "English"],
57
+ ["Создайте презентацию о устойчивом градостроительстве, 8 слайдов", "Русский"],
58
+ ["Разработайте презентацию о новшествах в области медицинских технологий, 7 слайдов", "Русский"],
59
+ ["Design a presentation on innovations in healthcare technology, 7 slides", "English"],
60
+ ["Подготовьте презентацию о глобальных экономических тенденциях, 5 слайдов", "Русский"],
61
+ ["Prepare a presentation on global economic trends, 5 slides", "English"],
62
+ ["Разработайте презентацию о психологии потребительского поведения, 6 слайдов", "Русский"],
63
+ ["Develop a presentation on the psychology of consumer behavior, 6 slides", "English"],
64
+ ["Сгенерируйте презентацию о преимуществах осознанности и медитации, 7 слайдов", "Русский"],
65
+ ["Generate a presentation on the benefits of mindfulness and meditation, 7 slides", "English"],
66
+ ["Создайте презентацию о достижениях в области автономных транспортных средств, 8 слайдов", "Русский"],
67
+ ["Create a presentation on advancements in autonomous vehicles, 8 slides", "English"],
68
+ ["Разработайте презентацию о влиянии изменений климатической политики, 5 слайдов", "Русский"],
69
+ ["Design a presentation on the impact of climate policy changes, 5 slides", "English"],
70
+ ]
71
+
72
+ iface = gr.Interface(
73
+ fn=create_presentation,
74
+ inputs=[
75
+ gr.Textbox(
76
+ label="Presentation Description",
77
+ placeholder="Enter the description for the presentation..."
78
+ ),
79
+ gr.Dropdown(
80
+ label="Language",
81
+ choices=["English", "Russian"],
82
+ value="English"
83
+ )
84
+ ],
85
+ outputs=gr.File(
86
+ label="Download Presentation"
87
+ ),
88
+ title="Presentation Generator",
89
+ description="Generate a presentation based on the provided description and selected language. Click the button to download the presentation.",
90
+ css="footer {visibility: hidden}",
91
+ allow_flagging="never",
92
+ examples=examples
93
+ )
94
+
95
+ iface.launch()
fonts/Arial.ttf ADDED
Binary file (367 kB). View file
 
fonts/ArialBd.ttf ADDED
Binary file (288 kB). View file
 
fonts/ArialBdIt.ttf ADDED
Binary file (227 kB). View file
 
fonts/ArialIt.ttf ADDED
Binary file (208 kB). View file
 
fonts/ComicSansMS.ttf ADDED
Binary file (128 kB). View file
 
fonts/ComicSansMSBd.ttf ADDED
Binary file (111 kB). View file
 
fonts/CourierNew.ttf ADDED
Binary file (98.9 kB). View file
 
fonts/Georgia.ttf ADDED
Binary file (155 kB). View file
 
fonts/GeorgiaBd.ttf ADDED
Binary file (141 kB). View file
 
fonts/GeorgiaBdIt.ttf ADDED
Binary file (160 kB). View file
 
fonts/GeorgiaIt.ttf ADDED
Binary file (157 kB). View file
 
fonts/Helvetica.ttf ADDED
Binary file (313 kB). View file
 
fonts/HelveticaBd.ttf ADDED
Binary file (84 kB). View file
 
fonts/HelveticaNeue.ttf ADDED
Binary file (128 kB). View file
 
fonts/HelveticaNeueBd.ttf ADDED
Binary file (135 kB). View file
 
fonts/LucidaSansUnicode.ttf ADDED
Binary file (324 kB). View file
 
fonts/README ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ copr-some-nice-fonts
2
+ ====================
3
+
4
+ This is a Fedora/CentOS repo for easy installing of some nice fonts. This
5
+ includes the following fonts:
6
+
7
+ - Arial
8
+ - Comic Sans MS
9
+ - Courier New
10
+ - Georgia
11
+ - Helvetica Neue
12
+ - Helvetica
13
+ - Lucida Sans Unicode
14
+ - Tahoma
15
+ - Times New Roman
16
+ - Trebuchet MS
17
+ - Verdana
18
+
19
+ Using it
20
+ --------
21
+
22
+ sudo dnf copr enable adrienverge/some-nice-fonts
23
+ sudo dnf install some-nice-fonts
24
+
25
+ Building it
26
+ -----------
27
+
28
+ cp *.ttf ~/rpmbuild/SOURCES && rpmbuild -ba some-nice-fonts.spec
fonts/Tahoma.ttf ADDED
Binary file (384 kB). View file
 
fonts/TahomaBd.ttf ADDED
Binary file (297 kB). View file
 
fonts/TimesNewRoman.ttf ADDED
Binary file (85.3 kB). View file
 
fonts/TimesNewRomanBd.ttf ADDED
Binary file (335 kB). View file
 
fonts/TimesNewRomanBdIt.ttf ADDED
Binary file (240 kB). View file
 
fonts/TimesNewRomanIt.ttf ADDED
Binary file (248 kB). View file
 
fonts/TrebuchetMS.ttf ADDED
Binary file (134 kB). View file
 
fonts/TrebuchetMSBd.ttf ADDED
Binary file (123 kB). View file
 
fonts/TrebuchetMSBdIt.ttf ADDED
Binary file (131 kB). View file
 
fonts/TrebuchetMSIt.ttf ADDED
Binary file (139 kB). View file
 
fonts/Verdana.ttf ADDED
Binary file (172 kB). View file
 
fonts/VerdanaBd.ttf ADDED
Binary file (138 kB). View file