File size: 3,719 Bytes
11edfba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311538b
 
 
11edfba
 
 
 
311538b
11edfba
 
 
 
311538b
 
11edfba
 
 
 
 
311538b
11edfba
 
311538b
 
 
11edfba
 
311538b
11edfba
 
311538b
11edfba
 
 
311538b
11edfba
 
 
 
 
311538b
11edfba
311538b
 
 
 
11edfba
 
 
 
 
 
 
 
311538b
 
11edfba
 
 
 
 
 
 
 
 
 
311538b
11edfba
 
311538b
11edfba
 
 
311538b
11edfba
 
 
 
 
311538b
11edfba
311538b
 
 
 
11edfba
 
 
 
 
 
 
 
 
 
311538b
11edfba
 
 
 
 
 
 
 
 
311538b
11edfba
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import logging
from typing import List, Tuple, Dict

import streamlit as st
import torch
import gc
import time
import numpy as np
from PIL import Image
from time import perf_counter
from contextlib import contextmanager
from scipy.signal import fftconvolve
from PIL import ImageFilter

from diffusers import ControlNetModel, UniPCMultistepScheduler
from diffusers import StableDiffusionInpaintPipeline

from config import WIDTH, HEIGHT
from stable_diffusion_controlnet_inpaint_img2img import (
    StableDiffusionControlNetInpaintImg2ImgPipeline,
)
from helpers import flush

LOGGING = logging.getLogger(__name__)


class ControlNetPipeline:
    def __init__(self):
        self.in_use = False
        self.controlnet = ControlNetModel.from_pretrained(
            "BertChristiaens/controlnet-seg-room", torch_dtype=torch.float16
        )

        self.pipe = StableDiffusionControlNetInpaintImg2ImgPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting",
            controlnet=self.controlnet,
            safety_checker=None,
            torch_dtype=torch.float16,
        )

        self.pipe.scheduler = UniPCMultistepScheduler.from_config(
            self.pipe.scheduler.config
        )
        self.pipe.enable_xformers_memory_efficient_attention()
        self.pipe = self.pipe.to("cuda")

        self.waiting_queue = []
        self.count = 0

    @property
    def queue_size(self):
        return len(self.waiting_queue)

    def __call__(self, **kwargs):
        self.count += 1
        number = self.count

        self.waiting_queue.append(number)

        # wait until the next number in the queue is the current number
        # while self.waiting_queue[0] != number:
        #     print(f"Wait for your turn {number} in queue {self.waiting_queue}")
        #     time.sleep(0.5)
        #     pass

        # it's your turn, so remove the number from the queue
        # and call the function
        print("It's the turn of", self.count)
        results = self.pipe(**kwargs)
        self.waiting_queue.pop(0)
        flush()
        return results


class SDPipeline:
    def __init__(self):
        self.pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-inpainting",
            torch_dtype=torch.float16,
            safety_checker=None,
        )

        self.pipe.enable_xformers_memory_efficient_attention()
        self.pipe = self.pipe.to("cuda")

        self.waiting_queue = []
        self.count = 0

    @property
    def queue_size(self):
        return len(self.waiting_queue)

    def __call__(self, **kwargs):
        self.count += 1
        number = self.count

        self.waiting_queue.append(number)

        # wait until the next number in the queue is the current number
        # while self.waiting_queue[0] != number:
        #     print(f"Wait for your turn {number} in queue {self.waiting_queue}")
        #     time.sleep(0.5)
        #     pass

        # it's your turn, so remove the number from the queue
        # and call the function
        print("It's the turn of", self.count)
        results = self.pipe(**kwargs)
        self.waiting_queue.pop(0)
        flush()
        return results


@st.experimental_singleton(max_entries=5,show_spinner=False)
def get_controlnet():
    """Method to load the controlnet model
    Returns:
        ControlNetModel: controlnet model
    """
    pipe = ControlNetPipeline()
    return pipe


@st.experimental_singleton(max_entries=5,show_spinner=False)
def get_inpainting_pipeline():
    """Method to load the inpainting pipeline
    Returns:
        StableDiffusionInpaintPipeline: inpainting pipeline
    """
    pipe = SDPipeline()
    return pipe