|
import gradio as gr |
|
import httpx |
|
import time |
|
from datetime import datetime |
|
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader |
|
from llama_parse import LlamaParse |
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding |
|
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI |
|
|
|
|
|
llm = HuggingFaceInferenceAPI(model_name="tiiuae/falcon-7b-instruct") |
|
parser = LlamaParse(api_key='llx-zKtsC5UBLs8DOApOsLluXMBdQhC75ea0Vs80SmPSjsmDzuhh', result_type='markdown') |
|
|
|
|
|
file_extractor = {'.pdf': parser} |
|
documents = SimpleDirectoryReader('data/', file_extractor=file_extractor).load_data() |
|
|
|
|
|
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") |
|
vector_index = VectorStoreIndex.from_documents(documents, embed_model=embed_model) |
|
query_engine = vector_index.as_query_engine(llm=llm) |
|
|
|
|
|
system_prompt = """ |
|
You are an AI assistant designed to answer questions about the Hund Ecosystem based on the uploaded PDF document. |
|
Your primary responsibility is to provide detailed, accurate, and clear answers to user queries related to the content of the document. |
|
For any question that is not related to the content of the document, kindly ask the user to refer to the Hund Ecosystem. |
|
Please ensure to be polite and professional in your responses. If the question cannot be answered based on the document, kindly guide the user accordingly. |
|
""" |
|
|
|
|
|
def query_with_retry(query, max_retries=3, wait_time=5): |
|
for attempt in range(max_retries): |
|
try: |
|
start_time = datetime.now() |
|
response = query_engine.query(query) |
|
end_time = datetime.now() |
|
duration = (end_time - start_time).total_seconds() |
|
print(f"Query completed in {duration:.2f} seconds.\n {response}") |
|
return response |
|
except httpx.ReadTimeout: |
|
if attempt < max_retries - 1: |
|
print(f"Timeout occurred. Retrying in {wait_time} seconds...") |
|
time.sleep(wait_time) |
|
else: |
|
raise |
|
except Exception as e: |
|
print(f"An error occurred: {e}") |
|
break |
|
|
|
|
|
def respond(message, history): |
|
try: |
|
|
|
bot_message = query_engine.query(message) |
|
|
|
print(f"\n{datetime.now()}:{llm.model_name}:: {message} --> {str(bot_message)}\n") |
|
|
|
|
|
history.append((message, str(bot_message))) |
|
|
|
|
|
return history, "" |
|
|
|
except Exception as e: |
|
if str(e) == "'NoneType' object has no attribute 'as_query_engine'": |
|
return "Please upload a file.", history |
|
return f"An error occurred: {e}", history |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")])) as demo: |
|
gr.Markdown("# HundAI Chatbot🤖") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
chatbot = gr.Chatbot(height=500) |
|
user_message = gr.Textbox(placeholder="Ask me questions about the Hund Ecosystem!", container=False) |
|
submit_btn = gr.Button("Send") |
|
clear_btn = gr.Button("Clear Chat") |
|
|
|
|
|
submit_btn.click(fn=respond, inputs=[user_message, chatbot], outputs=[chatbot, user_message]) |
|
|
|
|
|
clear_btn.click(lambda: [None, []], outputs=[chatbot, chatbot]) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|