Spaces:
Runtime error
Runtime error
import streamlit as st | |
from utils.levels import complete_level, render_page, initialize_level | |
from utils.login import get_login, initialize_login | |
from utils.inference import query | |
import os | |
import time | |
import face_recognition | |
import cv2 | |
import numpy as np | |
initialize_login() | |
initialize_level() | |
LEVEL = 4 | |
def infer(image): | |
time.sleep(1) | |
output = query(image) | |
cols = st.columns(2) | |
cols[0].image(image, use_column_width=True) | |
with cols[1]: | |
for item in output: | |
st.progress(item["score"], text=item["label"]) | |
# Get a reference to webcam #0 (the default one) | |
video_capture = cv2.VideoCapture(0) | |
def step4_page(): | |
st.header("Trying It Out") | |
st.info( | |
"Now that we know how our face recognition application works, let's try it out!" | |
) | |
face_encodings_dir = os.path.join(".sessions", get_login()["username"], "face_encodings") | |
face_encodings = os.listdir(face_encodings_dir) | |
known_face_encodings = [] | |
known_face_names = [] | |
if len(face_encodings) > 0: | |
for i, face_encoding in enumerate(face_encodings): | |
known_face_encoding = np.load(os.path.join(face_encodings_dir, face_encoding)) | |
face_name = img.split(".")[0] | |
known_face_encodings.append(known_face_encoding) | |
known_face_names.append(face_name) | |
while True: | |
# Grab a single frame of video | |
ret, frame = video_capture.read() | |
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) | |
rgb_frame = frame[:, :, ::-1] | |
# Find all the faces and face encodings in the frame of video | |
face_locations = face_recognition.face_locations(rgb_frame) | |
face_encodings = face_recognition.face_encodings(rgb_frame, face_locations) | |
# Loop through each face in this frame of video | |
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings): | |
# See if the face is a match for the known face(s) | |
matches = face_recognition.compare_faces(known_face_encodings, face_encoding) | |
name = "Unknown" | |
# If a match was found in known_face_encodings, just use the first one. | |
# if True in matches: | |
# first_match_index = matches.index(True) | |
# name = known_face_names[first_match_index] | |
# Or instead, use the known face with the smallest distance to the new face | |
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding) | |
best_match_index = np.argmin(face_distances) | |
if matches[best_match_index]: | |
name = known_face_names[best_match_index] | |
# Draw a box around the face | |
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) | |
# Draw a label with a name below the face | |
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) | |
font = cv2.FONT_HERSHEY_DUPLEX | |
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) | |
# Display the resulting image | |
cv2.imshow('Video', frame) | |
# Hit 'q' on the keyboard to quit! | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
# Release handle to the webcam | |
video_capture.release() | |
cv2.destroyAllWindows() | |
st.info("Click on the button below to complete this level!") | |
if st.button("Complete Level"): | |
complete_level(LEVEL) | |
render_page(step4_page, LEVEL) | |