Shafeek Saleem commited on
Commit
19127c5
1 Parent(s): 5d0a9c4

fixed face detection page

Browse files
Files changed (1) hide show
  1. pages/4_Face Recognition.py +10 -2
pages/4_Face Recognition.py CHANGED
@@ -27,7 +27,15 @@ def infer(image):
27
  video_capture = cv2.VideoCapture(0)
28
 
29
  def step4_page():
30
- st.header("Trying It Out")
 
 
 
 
 
 
 
 
31
  st.info(
32
  "Now that we know how our face recognition application works, let's try it out!"
33
  )
@@ -38,7 +46,7 @@ def step4_page():
38
  if len(face_encodings) > 0:
39
  for i, face_encoding in enumerate(face_encodings):
40
  known_face_encoding = np.load(os.path.join(face_encodings_dir, face_encoding))
41
- face_name = img.split(".")[0]
42
  known_face_encodings.append(known_face_encoding)
43
  known_face_names.append(face_name)
44
 
 
27
  video_capture = cv2.VideoCapture(0)
28
 
29
  def step4_page():
30
+ st.header("Face Recognition: Trying It Out")
31
+ st.write(
32
+ """
33
+ Once the face encodings are obtained, they can be stored in a database or used for face recognition tasks.
34
+ During face recognition, the encodings of input faces are compared to the stored encodings (our known-face database)
35
+ to determine if a match exists. Various similarity metrics, such as Euclidean distance or cosine similarity,
36
+ can be utilized to measure the similarity between face encodings and determine potential matches.
37
+ """
38
+ )
39
  st.info(
40
  "Now that we know how our face recognition application works, let's try it out!"
41
  )
 
46
  if len(face_encodings) > 0:
47
  for i, face_encoding in enumerate(face_encodings):
48
  known_face_encoding = np.load(os.path.join(face_encodings_dir, face_encoding))
49
+ face_name = face_encoding.split(".")[0]
50
  known_face_encodings.append(known_face_encoding)
51
  known_face_names.append(face_name)
52