Shafeek Saleem commited on
Commit
2e086e2
1 Parent(s): 0e1e0d9
.idea/sonarlint/issuestore/2/6/261359fd9dbbe29d2e8fa924e82dca6f103aeb4b DELETED
File without changes
.idea/sonarlint/issuestore/index.pb CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cb771d2e71f1c7b0a253bccda5df0922f65c71590347796dd86cce5a272c9e0c
3
- size 190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b4951c46d564e515a40d50a2cdf6b46376c146df6a56092e672ecc1f965a7f2
3
+ size 123
0_Introduction.py CHANGED
@@ -7,33 +7,47 @@ initialize_level()
7
 
8
  LEVEL = 0
9
 
 
 
 
10
 
11
  def intro_page():
12
- st.header("Face Recognition")
13
- st.subheader("Introduction")
14
-
15
- st.write(
16
- """
17
- Welcome to the interactive tutorial on creating your very own Face Recognition Application!
18
- """
19
- )
20
-
21
- st.image(
22
- "https://static.wixstatic.com/media/abb909_35aa4b27e4b840659a20fd69f0a18354~mv2.gif",
23
- use_column_width=True,
24
- )
25
-
26
- st.write(
27
- """
28
- In this tutorial, you will learn how to build a simple application that can detect and recognise faces from a given photo. Face recognition has revolutionized
29
- various industries, including security, entertainment, and personal identification. Are you ready to dive into the exciting world of face recognition?
30
- """
31
- )
32
-
33
- st.info(f"Click on the button below to start the tutorial!")
34
-
35
- if st.button("I am Ready!"):
36
- complete_level(LEVEL)
 
 
 
 
 
 
 
 
 
 
 
37
 
38
 
39
  render_page(intro_page, LEVEL)
 
7
 
8
  LEVEL = 0
9
 
10
+ import cv2
11
+
12
+
13
 
14
  def intro_page():
15
+ st.title("Webcam Live Feed")
16
+ run = st.checkbox('Run')
17
+ FRAME_WINDOW = st.image([])
18
+ camera = cv2.VideoCapture(0)
19
+
20
+ while run:
21
+ _, frame = camera.read()
22
+ frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
23
+ FRAME_WINDOW.image(frame)
24
+ else:
25
+ st.write('Stopped')
26
+ # st.header("Face Recognition")
27
+ # st.subheader("Introduction")
28
+
29
+ # st.write(
30
+ # """
31
+ # Welcome to the interactive tutorial on creating your very own Face Recognition Application!
32
+ # """
33
+ # )
34
+ #
35
+ # st.image(
36
+ # "https://static.wixstatic.com/media/abb909_35aa4b27e4b840659a20fd69f0a18354~mv2.gif",
37
+ # use_column_width=True,
38
+ # )
39
+ #
40
+ # st.write(
41
+ # """
42
+ # In this tutorial, you will learn how to build a simple application that can detect and recognise faces from a given photo. Face recognition has revolutionized
43
+ # various industries, including security, entertainment, and personal identification. Are you ready to dive into the exciting world of face recognition?
44
+ # """
45
+ # )
46
+ #
47
+ # st.info(f"Click on the button below to start the tutorial!")
48
+ #
49
+ # if st.button("I am Ready!"):
50
+ # complete_level(LEVEL)
51
 
52
 
53
  render_page(intro_page, LEVEL)
pages/1_Technology Behind It.py CHANGED
@@ -1,27 +1,12 @@
1
  import streamlit as st
2
  from utils.levels import complete_level, render_page, initialize_level
3
  from utils.login import initialize_login
4
- import cv2
5
 
6
  LEVEL = 1
7
 
8
  initialize_login()
9
  initialize_level()
10
 
11
- def returnCameraIndexes():
12
- # checks the first 10 indexes.
13
- index = 0
14
- arr = []
15
- i = 10
16
- while i > 0:
17
- cap = cv2.VideoCapture(index)
18
- if cap.read()[0]:
19
- arr.append(index)
20
- cap.release()
21
- index += 1
22
- i -= 1
23
- return arr
24
-
25
  def step1_page():
26
  st.header("Technology Behind It")
27
  st.markdown(
@@ -60,29 +45,6 @@ def step1_page():
60
 
61
  st.info("Click on the button below to continue!")
62
 
63
- """TEST"""
64
- input_type = st.radio("Select the Input Type", ["Image upload", "Camera", "Live Video"])
65
- st.write(returnCameraIndexes())
66
- if input_type == "Live Video":
67
- cam = cv2.VideoCapture(0)
68
- if not cam.isOpened():
69
- print("Cannot open camera")
70
- exit()
71
- cam.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
72
- cam.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
73
- FRAME_WINDOW = st.image([])
74
-
75
- while True:
76
- ret, frame = cam.read()
77
- if not ret:
78
- st.error("Failed to capture frame from camera")
79
- st.info("Please turn off the other app that is using the camera and restart app")
80
- st.stop()
81
- # image, name, face_id = recognize(frame, tolerance)
82
- image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
83
- # Display name and ID of the person
84
- FRAME_WINDOW.image(image)
85
-
86
  if st.button("Complete"):
87
  complete_level(LEVEL)
88
 
 
1
  import streamlit as st
2
  from utils.levels import complete_level, render_page, initialize_level
3
  from utils.login import initialize_login
 
4
 
5
  LEVEL = 1
6
 
7
  initialize_login()
8
  initialize_level()
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  def step1_page():
11
  st.header("Technology Behind It")
12
  st.markdown(
 
45
 
46
  st.info("Click on the button below to continue!")
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  if st.button("Complete"):
49
  complete_level(LEVEL)
50