import streamlit as st from utils.levels import complete_level, render_page, initialize_level from utils.login import get_login, initialize_login from utils.inference import query import os import time import face_recognition import cv2 import numpy as np initialize_login() initialize_level() LEVEL = 4 def infer(image): time.sleep(1) output = query(image) cols = st.columns(2) cols[0].image(image, use_column_width=True) with cols[1]: for item in output: st.progress(item["score"], text=item["label"]) # Get a reference to webcam #0 (the default one) video_capture = cv2.VideoCapture(0) def step4_page(): st.header("Trying It Out") st.info( "Now that we know how our face recognition application works, let's try it out!" ) face_encodings_dir = os.path.join(".sessions", get_login()["username"], "face_encodings") face_encodings = os.listdir(face_encodings_dir) known_face_encodings = [] known_face_names = [] if len(face_encodings) > 0: for i, face_encoding in enumerate(face_encodings): known_face_encoding = np.load(os.path.join(face_encodings_dir, face_encoding)) face_name = img.split(".")[0] known_face_encodings.append(known_face_encoding) known_face_names.append(face_name) while True: # Grab a single frame of video ret, frame = video_capture.read() # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) rgb_frame = frame[:, :, ::-1] # Find all the faces and face encodings in the frame of video face_locations = face_recognition.face_locations(rgb_frame) face_encodings = face_recognition.face_encodings(rgb_frame, face_locations) # Loop through each face in this frame of video for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings): # See if the face is a match for the known face(s) matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name = "Unknown" # If a match was found in known_face_encodings, just use the first one. # if True in matches: # first_match_index = matches.index(True) # name = known_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face face_distances = face_recognition.face_distance(known_face_encodings, face_encoding) best_match_index = np.argmin(face_distances) if matches[best_match_index]: name = known_face_names[best_match_index] # Draw a box around the face cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Display the resulting image cv2.imshow('Video', frame) # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): break # Release handle to the webcam video_capture.release() cv2.destroyAllWindows() st.info("Click on the button below to complete this level!") if st.button("Complete Level"): complete_level(LEVEL) render_page(step4_page, LEVEL)