Spaces:
Running
Running
import torch | |
import numpy as np | |
# -- mixup data augmentation # mixup augmentation 계산 | |
# from https://github.com/hongyi-zhang/mixup/blob/master/cifar/utils.py | |
def mixup_data(x, y, alpha=1.0, soft_labels = None, use_cuda=False): | |
'''Compute the mixup data. Return mixed inputs, pairs of targets, and lambda''' | |
if alpha > 0.: | |
lam = np.random.beta(alpha, alpha) # 베타 분포에서 표본 추출 | |
else: | |
lam = 1. | |
batch_size = x.size()[0] | |
if use_cuda: | |
index = torch.randperm(batch_size).cuda() # 주어진 범위 내의 정수를 랜덤하게 생성 # tensor 를 gpu 에 할당 | |
else: | |
index = torch.randperm(batch_size) # 주어진 범위 내의 정수를 랜덤하게 생성 | |
mixed_x = lam * x + (1 - lam) * x[index,:] | |
y_a, y_b = y, y[index] | |
return mixed_x, y_a, y_b, lam | |
# mixup 적용 | |
def mixup_criterion(y_a, y_b, lam): | |
return lambda criterion, pred: lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b) | |