Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,649 Bytes
fa4f33d 4153232 fa4f33d a5b239b fa4f33d d83ac73 fa4f33d 0f12358 c230ecc 0456ac3 3f571c5 734ba91 3f571c5 734ba91 3f571c5 0456ac3 06b1f4a fa4f33d 06b1f4a 3f571c5 138e54a fa4f33d 670c684 fa4f33d d83ac73 fa4f33d c230ecc fa4f33d 670c684 fa4f33d 4153232 fa4f33d d7ede14 fa4f33d 913daca fa4f33d 4153232 53d7a45 fa4f33d 3300755 734ba91 fa4f33d 0af2106 fa4f33d 8848584 fa4f33d fca9488 625d325 fca9488 a3d097a fca9488 fa4f33d a3d097a fa4f33d a3d097a fa4f33d a3d097a fa4f33d e2b3319 b4cdd87 e2b3319 b4cdd87 e2b3319 fa4f33d 49e7e56 670c684 fa4f33d 85963e9 fa4f33d f8f73b3 fa4f33d dd317d1 fa4f33d ecebc12 fa4f33d bbada94 fa4f33d 5c4c452 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from numpy.random import PCG64DXSM, Generator, SeedSequence
from typing import Tuple, Any
from huggingface_hub import hf_hub_download
dtype: torch.dtype = torch.bfloat16
device: str = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("aifeifei798/DarkIdol-flux-v1", torch_dtype=dtype).to(device)
trigger_word = "CNSTLL"
pipe.load_lora_weights(
hf_hub_download("aifeifei798/feifei-flux-lora-v1.1", "feifei-v1.1.safetensors"),
adapter_name="feifei",
)
pipe.load_lora_weights(
hf_hub_download("adirik/flux-cinestill", "lora.safetensors"),
adapter_name="fluxcinestill",
)
pipe.set_adapters(
["feifei","fluxcinestill"],
adapter_weights=[0.8,1],
)
pipe.fuse_lora(
adapter_name=["feifei","fluxcinestill"],
lora_scale=1.0,
)
# Enable VAE big pic
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.unload_lora_weights()
torch.cuda.empty_cache()
# Define cinematic aspect ratios
ASPECT_RATIOS = {
"2.39:1 (Modern Widescreen)": 2.39,
"2.76:1 (Ultra Panavision 70)": 2.76,
"3.00:1 (Experimental Ultra-wide)": 3.00,
"4.00:1 (Polyvision)": 4.00,
"2.55:1 (CinemaScope)": 2.55,
"2.20:1 (Todd-AO)": 2.20,
"2.00:1 (Univisium)": 2.00,
"2.35:1 (Anamorphic Scope)": 2.35,
"2.59:1 (MGM Camera 65)": 2.59,
"1.75:1 (IMAX Digital)": 1.75,
"1.43:1 (IMAX 70mm)": 1.43,
"2.40:1 (Modern Anamorphic)": 2.40
}
MAX_SEED = np.iinfo(np.int64).max
MIN_WIDTH = 512
MAX_WIDTH = 3072
STANDARD_WIDTH = 2048
STEP_WIDTH = 8
STYLE_PROMPT = "analog film, high resolution, cinestill 800t, hyperrealistic, widescreen, anamorphic, vignette, bokeh, film grain, dramatic lighting, epic composition, moody, detailed, super wide shot, atmospheric, backlit, soft light, "
def calculate_height(width: int, aspect_ratio: float) -> int:
height = int(width / aspect_ratio)
return (height // 8) * 8
# Pre-calculate height mappings for common widths
HEIGHT_CACHE = {}
for ratio_name, ratio in ASPECT_RATIOS.items():
HEIGHT_CACHE[ratio_name] = {
width: calculate_height(width, ratio)
for width in range(MIN_WIDTH, MAX_WIDTH + 1, STEP_WIDTH)
}
def validate_aspect_ratio(ratio_name: str) -> float | None:
return ASPECT_RATIOS.get(ratio_name)
# Replace the single rng instance with a function that creates a fresh generator each time
def get_random_seed() -> int:
# Create a new generator with a random seed each time
ss = SeedSequence()
rng = Generator(PCG64DXSM(ss))
return int(rng.integers(0, MAX_SEED))
@spaces.GPU()
def infer(
prompt: str,
aspect_ratio: str,
width: int,
seed: Any = 42, # Change type hint to Any to handle both string and int inputs
randomize_seed: bool = False,
num_inference_steps: int = 4,
progress: Any = gr.Progress(track_tqdm=True)
) -> Tuple[Any, int]:
# Prepend style prompt to user input
FULL_PROMPT = f"{STYLE_PROMPT} {prompt}"
# print(f"Generating image with prompt: {FULL_PROMPT}")
if randomize_seed:
seed = get_random_seed()
else:
# Convert seed to int if it's a string
seed = int(seed)
ratio = validate_aspect_ratio(aspect_ratio)
if ratio is None:
raise ValueError(f"Invalid aspect ratio: {aspect_ratio}")
generator = torch.Generator().manual_seed(seed)
height = HEIGHT_CACHE[aspect_ratio][width]
# Calculate megapixel count
MEGAPIXEL_COUNT = (width * height) / 1000000
print(f"Generating {MEGAPIXEL_COUNT} megapixel image.")
FULL_PROMPT = f"feifei, real model girl in real life, {FULL_PROMPT}, slight smile, Master of Light and Shadow."
image = pipe(
prompt="",
prompt_2=FULL_PROMPT, # Use the combined prompt
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=3.5,
max_sequence_length=256
).images[0]
return image, seed
examples = [
# Rocket Car
[
"NOT PANORAMIC, NOT MIRRORED. a rocket car going across the bonneville salt flats, the image is blurred to show the immense speed.", # prompt
"4.00:1 (Polyvision)", # aspect_ratio
3072, # width
23, # seed
False, # randomize_seed
6, # num_inference_steps
],
# Taxi Driver
[
"This gripping frame captures a close-up of a man, his face illuminated by the harsh red glow of city lights, evoking a mood of unease and introspection. His expression is intense and unreadable, with a hint of brooding menace. The dark, blurred background suggests a bustling urban night, with neon lights flickering faintly, emphasizing the gritty, isolating atmosphere. The contrast between the man’s rugged features and the vibrant red lighting highlights the tension and internal conflict likely central to the scene, immersing the viewer in the character’s psychological state.", # prompt
"2.39:1 (Modern Widescreen)", # aspect_ratio
2048, # width
0, # seed
False, # randomize_seed
6, # num_inference_steps
],
# Leon The Professional
[
"This tightly framed shot focuses on the reflective lenses of round sun glasses, worn by a figure with weathered skin. The reflections in the glasses reveal a table with cups and hands mid-gesture, suggesting an intense, unseen discussion or ritual taking place. The muted tones and soft lighting enhance the intimate and mysterious mood, drawing attention to the details of the reflections. The perspective feels voyeuristic, as if glimpsing a private moment through the character’s point of view. This evocative close-up emphasizes themes of observation, secrecy, and layered meaning within the narrative.",
"2.76:1 (Ultra Panavision 70)",
2048,
1744078352,
False,
6,
],
# Lawrence of Arabia
[
"three individuals on camels traversing a vast, sunlit desert. The golden sand stretches endlessly in the foreground, interrupted by the striking presence of dark, rugged mountains in the background, bathed in warm sunlight. The composition emphasizes the isolation and majesty of the desert landscape, with the figures casting long shadows that add depth to the scene. The muted blue sky contrasts beautifully with the earthy tones, creating a balanced and immersive visual. The moment conveys a sense of adventure, introspection, and the timeless allure of the natural world.",
"2.20:1 (Todd-AO)",
2048,
0,
False,
6,
],
]
css="""
body {
background-image: url('https://huggingface.co/spaces/takarajordan/CineDiffusion/resolve/main/static/background.webp');
background-size: cover;
background-position: center;
background-repeat: no-repeat;
background-attachment: fixed;
min-height: 100vh;
}
gradio-app {
background: none !important;
}
.gradio-container {
background-color: white;
}
.dark .gradio-container {
background-color: #121212;
}
#col-container {
margin: 0 auto;
max-width: 100%;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# CineDiffusion 🎥 FeiFei
**CineDiffusion** creates cinema-quality widescreen images at up to **4.2 Megapixels** — *4x higher resolution* than typical AI image generators (1MP). Features authentic cinematic aspect ratios for true widescreen results.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
placeholder="Enter your prompt",
container=True,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(
label="Result",
show_label=False,
width="100%",
type="pil",
)
with gr.Row():
aspect_ratio = gr.Dropdown(
label="Aspect Ratio",
choices=list(ASPECT_RATIOS.keys()),
value="2.39:1 (Modern Widescreen)"
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=MIN_WIDTH,
maximum=MAX_WIDTH,
step=STEP_WIDTH,
value=STANDARD_WIDTH,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=6,
maximum=50,
step=1,
value=8,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt, aspect_ratio, width, seed, randomize_seed, num_inference_steps],
outputs=[result, seed],
cache_examples=False
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, aspect_ratio, width, seed, randomize_seed, num_inference_steps],
outputs=[result, seed]
)
demo.launch(ssr_mode = False) |