File size: 3,561 Bytes
9857f35
 
 
a6fce5e
9857f35
a6fce5e
9857f35
a6fce5e
9857f35
 
f588de8
9857f35
 
a6fce5e
9857f35
a6fce5e
 
9857f35
 
 
 
a6fce5e
 
 
 
 
 
 
9857f35
a6fce5e
9857f35
a6fce5e
 
 
9857f35
 
a6fce5e
9857f35
 
a6fce5e
9857f35
 
 
 
a6fce5e
9857f35
fe267cb
 
a6fce5e
 
9857f35
a6fce5e
9857f35
 
 
a0d7fba
9857f35
 
 
a6fce5e
 
 
9857f35
a6fce5e
9857f35
a6fce5e
9857f35
 
 
 
 
 
 
a6fce5e
9857f35
a6fce5e
9857f35
a6fce5e
9857f35
 
 
 
 
a6fce5e
9857f35
a6fce5e
9857f35
 
 
 
 
a6fce5e
9857f35
a6fce5e
9857f35
a6fce5e
 
9857f35
 
 
 
 
a6fce5e
9857f35
a6fce5e
 
 
 
 
 
f588de8
a6fce5e
9857f35
 
 
a6fce5e
 
 
9857f35
 
a6fce5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("aifeifei798/DarkIdol-flux-v1", torch_dtype=dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
            prompt = prompt, 
            width = width,
            height = height,
            num_inference_steps = num_inference_steps, 
            generator = generator,
            guidance_scale=0.0
    ).images[0] 
    return image, seed
 
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# Shuttle 3.1 Aesthetic
Shuttle 3.1 Aesthetic is a text-to-image AI model designed to create aesthetic, detailed and diverse images from textual prompts in just 4 steps. It offers enhanced performance in image quality, typography, understanding complex prompts, and resource efficiency.
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=12,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples=False
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
        outputs = [result, seed]
    )

demo.launch()