aifeifei798 commited on
Commit
cd732b5
1 Parent(s): a0d7fba

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -2
app.py CHANGED
@@ -4,12 +4,29 @@ import random
4
  import spaces
5
  import torch
6
  from diffusers import DiffusionPipeline
 
7
 
8
  dtype = torch.bfloat16
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
 
11
  pipe = DiffusionPipeline.from_pretrained("aifeifei798/DarkIdol-flux-v1", torch_dtype=dtype).to(device)
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  MAX_SEED = np.iinfo(np.int32).max
14
  MAX_IMAGE_SIZE = 2048
15
 
@@ -44,8 +61,8 @@ css="""
44
  with gr.Blocks(css=css) as demo:
45
 
46
  with gr.Column(elem_id="col-container"):
47
- gr.Markdown(f"""# Shuttle 3.1 Aesthetic
48
- Shuttle 3.1 Aesthetic is a text-to-image AI model designed to create aesthetic, detailed and diverse images from textual prompts in just 4 steps. It offers enhanced performance in image quality, typography, understanding complex prompts, and resource efficiency.
49
  """)
50
 
51
  with gr.Row():
 
4
  import spaces
5
  import torch
6
  from diffusers import DiffusionPipeline
7
+ from huggingface_hub import hf_hub_download
8
 
9
  dtype = torch.bfloat16
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
 
12
  pipe = DiffusionPipeline.from_pretrained("aifeifei798/DarkIdol-flux-v1", torch_dtype=dtype).to(device)
13
 
14
+ pipe.load_lora_weights(
15
+ hf_hub_download("aifeifei798/feifei-flux-lora-v1", "feifei.safetensors"),
16
+ adapter_name="feifei",
17
+ )
18
+
19
+ pipe.set_adapters(
20
+ ["feifei"],
21
+ adapter_weights=[0.65],
22
+ )
23
+ pipe.fuse_lora(
24
+ adapter_name=["feifei"],
25
+ lora_scale=1.0,
26
+ )
27
+ pipe.unload_lora_weights()
28
+ torch.cuda.empty_cache()
29
+
30
  MAX_SEED = np.iinfo(np.int32).max
31
  MAX_IMAGE_SIZE = 2048
32
 
 
61
  with gr.Blocks(css=css) as demo:
62
 
63
  with gr.Column(elem_id="col-container"):
64
+ gr.Markdown(f"""# DarkIdol-flux-FeiFei
65
+ DarkIdol-flux-FeiFei is a text-to-image AI model designed to create aesthetic, detailed and diverse images from textual prompts in just 4-8 steps. It offers enhanced performance in image quality, typography, understanding complex prompts, and resource efficiency.
66
  """)
67
 
68
  with gr.Row():