File size: 4,451 Bytes
1908947
a45321d
 
 
 
0d8acf0
a45321d
0d8acf0
 
 
 
 
 
 
 
 
a45321d
0d8acf0
a45321d
 
 
0d8acf0
a45321d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
441faec
a45321d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
441faec
a45321d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1908947
a45321d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import gradio as gr
import numpy as np
import random
import spaces
import torch
import os
from diffusers import DiffusionPipeline
from huggingface_hub import login

# Access the API token securely from Hugging Face Secrets
hf_api_token = os.getenv("HF_API_TOKEN")

if hf_api_token:
    login(token=hf_api_token)
else:
    raise ValueError("Hugging Face API token not found in secrets.")

# Set the device and dtype
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load the diffusion pipeline from the gated repository
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)):
    if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE:
        raise ValueError("Image size exceeds the maximum allowed dimensions.")
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    try:
        image = pipe(
                prompt=prompt, 
                width=width,
                height=height,
                num_inference_steps=num_inference_steps, 
                generator=generator,
                guidance_scale=guidance_scale
        ).images[0] 
    except Exception as e:
        return None, seed, f"Error: {str(e)}"
    
    return image, seed, None
 
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
    # Add more diverse examples
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# Custom Image Creator
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1)]
        """)
        
        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                show_label=False,
                max_lines=4,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=6,
                )
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.5,
                    value=7.5,
                )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    run_button.click(
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps, guidance_scale],
        outputs=[result, seed],
    )

    gr.Markdown("""
    ## Save Your Image
    Right-click on the image and select 'Save As' to download the generated image.
    """)
    
demo.launch()