File size: 4,884 Bytes
8ccf632
 
 
 
 
80a2167
 
81b26b5
80a2167
06f0278
80a2167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06f0278
8ccf632
 
80a2167
 
8ccf632
 
06f0278
8ccf632
 
01787f6
80a2167
 
01787f6
 
 
54192f0
 
8ccf632
01787f6
 
 
80a2167
 
 
 
 
 
 
01787f6
80a2167
01787f6
 
80a2167
 
 
 
01787f6
8ccf632
 
06f0278
 
 
8ccf632
 
01787f6
8ccf632
 
e2944a6
8ccf632
 
 
 
 
 
4572168
6ebb7df
80a2167
8ccf632
 
 
01787f6
8ccf632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01787f6
 
 
 
 
 
 
8ccf632
 
01787f6
 
 
 
8ccf632
 
 
01787f6
 
 
 
8ccf632
 
01787f6
 
 
 
 
9aa8809
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
import numpy as np
import random
import spaces
import torch
import os
import time
from diffusers import DiffusionPipeline
from huggingface_hub import login

# Ensure sentencepiece is installed in your environment
try:
    import sentencepiece
except ImportError:
    raise ImportError("The 'sentencepiece' library is required but not installed. Please add it to your environment.")

# Access the API token securely from Hugging Face Secrets
hf_api_token = os.getenv("HF_API_TOKEN")

if hf_api_token:
    login(token=hf_api_token)
else:
    raise ValueError("Hugging Face API token not found in secrets.")

# Set the device and dtype
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load the diffusion pipeline from the gated repository
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)):
    start_time = time.time()
    
    if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE:
        raise ValueError("Image size exceeds the maximum allowed dimensions.")
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    try:
        image = pipe(
            prompt=prompt, 
            width=width,
            height=height,
            num_inference_steps=num_inference_steps, 
            generator=generator,
            guidance_scale=guidance_scale
        ).images[0]
    except Exception as e:
        print(f"Error generating image: {e}")
        return None, seed, f"Error: {str(e)}"
    
    # Check if it took too long
    if time.time() - start_time > 60:  # 60 seconds timeout
        return None, seed, "Image generation took too long and was cancelled."

    return image, seed, None
 
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# Custom Image Creator
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1)]
        """)
        
        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            
            with gr.Row():
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.5,
                    value=7.5,
                )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    run_button.click(
        fn=infer,
        inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps, guidance_scale],
        outputs=[result, seed],
    )

    gr.Markdown("""
    ## Save Your Image
    Right-click on the image and select 'Save As' to download the generated image.
    """)
    
demo.launch()