File size: 4,884 Bytes
8ccf632 80a2167 81b26b5 80a2167 06f0278 80a2167 06f0278 8ccf632 80a2167 8ccf632 06f0278 8ccf632 01787f6 80a2167 01787f6 54192f0 8ccf632 01787f6 80a2167 01787f6 80a2167 01787f6 80a2167 01787f6 8ccf632 06f0278 8ccf632 01787f6 8ccf632 e2944a6 8ccf632 4572168 6ebb7df 80a2167 8ccf632 01787f6 8ccf632 01787f6 8ccf632 01787f6 8ccf632 01787f6 8ccf632 01787f6 9aa8809 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
import os
import time
from diffusers import DiffusionPipeline
from huggingface_hub import login
# Ensure sentencepiece is installed in your environment
try:
import sentencepiece
except ImportError:
raise ImportError("The 'sentencepiece' library is required but not installed. Please add it to your environment.")
# Access the API token securely from Hugging Face Secrets
hf_api_token = os.getenv("HF_API_TOKEN")
if hf_api_token:
login(token=hf_api_token)
else:
raise ValueError("Hugging Face API token not found in secrets.")
# Set the device and dtype
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the diffusion pipeline from the gated repository
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)):
start_time = time.time()
if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE:
raise ValueError("Image size exceeds the maximum allowed dimensions.")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
try:
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
except Exception as e:
print(f"Error generating image: {e}")
return None, seed, f"Error: {str(e)}"
# Check if it took too long
if time.time() - start_time > 60: # 60 seconds timeout
return None, seed, "Image generation took too long and was cancelled."
return image, seed, None
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Custom Image Creator
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1)]
""")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=20.0,
step=0.5,
value=7.5,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
run_button.click(
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps, guidance_scale],
outputs=[result, seed],
)
gr.Markdown("""
## Save Your Image
Right-click on the image and select 'Save As' to download the generated image.
""")
demo.launch() |