Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import numpy as np
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
6 |
-
import os
|
7 |
import time
|
8 |
from diffusers import DiffusionPipeline
|
9 |
|
@@ -24,7 +23,7 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
24 |
MAX_IMAGE_SIZE = 2048
|
25 |
|
26 |
@spaces.GPU()
|
27 |
-
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)):
|
28 |
start_time = time.time()
|
29 |
|
30 |
if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE:
|
@@ -32,11 +31,13 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_in
|
|
32 |
|
33 |
if randomize_seed:
|
34 |
seed = random.randint(0, MAX_SEED)
|
35 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
36 |
|
37 |
try:
|
|
|
38 |
image = pipe(
|
39 |
prompt=prompt,
|
|
|
40 |
width=width,
|
41 |
height=height,
|
42 |
num_inference_steps=num_inference_steps,
|
@@ -47,12 +48,11 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_in
|
|
47 |
print(f"Error generating image: {e}")
|
48 |
return None, seed, f"Error: {str(e)}"
|
49 |
|
50 |
-
# Check if it took too long
|
51 |
if time.time() - start_time > 60: # 60 seconds timeout
|
52 |
return None, seed, "Image generation took too long and was cancelled."
|
53 |
|
54 |
return image, seed, None
|
55 |
-
|
56 |
examples = [
|
57 |
"a tiny astronaut hatching from an egg on the moon",
|
58 |
"a cat holding a sign that says hello world",
|
@@ -62,29 +62,47 @@ examples = [
|
|
62 |
css = """
|
63 |
#col-container {
|
64 |
margin: 0 auto;
|
65 |
-
max-width:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
}
|
67 |
"""
|
68 |
|
69 |
with gr.Blocks(css=css) as demo:
|
70 |
-
|
71 |
with gr.Column(elem_id="col-container"):
|
72 |
-
gr.Markdown(
|
73 |
-
|
74 |
-
[
|
75 |
-
""")
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
result = gr.Image(label="Result", show_label=False)
|
88 |
|
89 |
with gr.Accordion("Advanced Settings", open=False):
|
90 |
seed = gr.Slider(
|
@@ -93,6 +111,7 @@ with gr.Blocks(css=css) as demo:
|
|
93 |
maximum=MAX_SEED,
|
94 |
step=1,
|
95 |
value=0,
|
|
|
96 |
)
|
97 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
|
@@ -103,6 +122,7 @@ with gr.Blocks(css=css) as demo:
|
|
103 |
maximum=MAX_IMAGE_SIZE,
|
104 |
step=32,
|
105 |
value=1024,
|
|
|
106 |
)
|
107 |
height = gr.Slider(
|
108 |
label="Height",
|
@@ -110,6 +130,7 @@ with gr.Blocks(css=css) as demo:
|
|
110 |
maximum=MAX_IMAGE_SIZE,
|
111 |
step=32,
|
112 |
value=1024,
|
|
|
113 |
)
|
114 |
|
115 |
with gr.Row():
|
@@ -119,6 +140,7 @@ with gr.Blocks(css=css) as demo:
|
|
119 |
maximum=50,
|
120 |
step=1,
|
121 |
value=4,
|
|
|
122 |
)
|
123 |
guidance_scale = gr.Slider(
|
124 |
label="Guidance Scale",
|
@@ -126,6 +148,7 @@ with gr.Blocks(css=css) as demo:
|
|
126 |
maximum=20.0,
|
127 |
step=0.5,
|
128 |
value=7.5,
|
|
|
129 |
)
|
130 |
|
131 |
gr.Examples(
|
@@ -138,7 +161,7 @@ with gr.Blocks(css=css) as demo:
|
|
138 |
|
139 |
run_button.click(
|
140 |
fn=infer,
|
141 |
-
inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps, guidance_scale],
|
142 |
outputs=[result, seed],
|
143 |
)
|
144 |
|
|
|
3 |
import random
|
4 |
import spaces
|
5 |
import torch
|
|
|
6 |
import time
|
7 |
from diffusers import DiffusionPipeline
|
8 |
|
|
|
23 |
MAX_IMAGE_SIZE = 2048
|
24 |
|
25 |
@spaces.GPU()
|
26 |
+
def infer(prompt, negative_prompt=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)):
|
27 |
start_time = time.time()
|
28 |
|
29 |
if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE:
|
|
|
31 |
|
32 |
if randomize_seed:
|
33 |
seed = random.randint(0, MAX_SEED)
|
34 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
35 |
|
36 |
try:
|
37 |
+
# Include negative prompts in the diffusion pipeline call
|
38 |
image = pipe(
|
39 |
prompt=prompt,
|
40 |
+
negative_prompt=negative_prompt, # Using the negative prompt here
|
41 |
width=width,
|
42 |
height=height,
|
43 |
num_inference_steps=num_inference_steps,
|
|
|
48 |
print(f"Error generating image: {e}")
|
49 |
return None, seed, f"Error: {str(e)}"
|
50 |
|
|
|
51 |
if time.time() - start_time > 60: # 60 seconds timeout
|
52 |
return None, seed, "Image generation took too long and was cancelled."
|
53 |
|
54 |
return image, seed, None
|
55 |
+
|
56 |
examples = [
|
57 |
"a tiny astronaut hatching from an egg on the moon",
|
58 |
"a cat holding a sign that says hello world",
|
|
|
62 |
css = """
|
63 |
#col-container {
|
64 |
margin: 0 auto;
|
65 |
+
max-width: 640px;
|
66 |
+
padding: 20px;
|
67 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
68 |
+
border-radius: 10px;
|
69 |
+
background-color: #f8f9fa;
|
70 |
+
}
|
71 |
+
#run-button {
|
72 |
+
background-color: #007bff;
|
73 |
+
color: white;
|
74 |
+
border: none;
|
75 |
+
padding: 10px 20px;
|
76 |
+
font-size: 16px;
|
77 |
+
border-radius: 5px;
|
78 |
+
}
|
79 |
+
#run-button:hover {
|
80 |
+
background-color: #0056b3;
|
81 |
}
|
82 |
"""
|
83 |
|
84 |
with gr.Blocks(css=css) as demo:
|
|
|
85 |
with gr.Column(elem_id="col-container"):
|
86 |
+
gr.Markdown("""
|
87 |
+
# Custom Image Creator
|
88 |
+
A 12B param rectified flow transformer from [FLUX.1](https://blackforestlabs.ai/) for 4-step generation.
|
89 |
+
""", elem_id="title")
|
90 |
|
91 |
+
prompt = gr.Textbox(
|
92 |
+
label="Prompt",
|
93 |
+
show_label=False,
|
94 |
+
max_lines=1,
|
95 |
+
placeholder="Enter your prompt...",
|
96 |
+
)
|
97 |
+
negative_prompt = gr.Textbox(
|
98 |
+
label="Negative Prompt",
|
99 |
+
show_label=False,
|
100 |
+
max_lines=1,
|
101 |
+
placeholder="Enter negative prompts (what to avoid)...",
|
102 |
+
)
|
103 |
+
run_button = gr.Button("Run", elem_id="run-button")
|
104 |
|
105 |
+
result = gr.Image(label="Result", show_label=False, interactive=True)
|
106 |
|
107 |
with gr.Accordion("Advanced Settings", open=False):
|
108 |
seed = gr.Slider(
|
|
|
111 |
maximum=MAX_SEED,
|
112 |
step=1,
|
113 |
value=0,
|
114 |
+
tooltip="Seed value for reproducibility. Randomize for unique results."
|
115 |
)
|
116 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
117 |
|
|
|
122 |
maximum=MAX_IMAGE_SIZE,
|
123 |
step=32,
|
124 |
value=1024,
|
125 |
+
tooltip="Adjust the width of the generated image."
|
126 |
)
|
127 |
height = gr.Slider(
|
128 |
label="Height",
|
|
|
130 |
maximum=MAX_IMAGE_SIZE,
|
131 |
step=32,
|
132 |
value=1024,
|
133 |
+
tooltip="Adjust the height of the generated image."
|
134 |
)
|
135 |
|
136 |
with gr.Row():
|
|
|
140 |
maximum=50,
|
141 |
step=1,
|
142 |
value=4,
|
143 |
+
tooltip="Controls the quality and coherence of the output."
|
144 |
)
|
145 |
guidance_scale = gr.Slider(
|
146 |
label="Guidance Scale",
|
|
|
148 |
maximum=20.0,
|
149 |
step=0.5,
|
150 |
value=7.5,
|
151 |
+
tooltip="Higher values result in outputs closer to the prompt."
|
152 |
)
|
153 |
|
154 |
gr.Examples(
|
|
|
161 |
|
162 |
run_button.click(
|
163 |
fn=infer,
|
164 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, num_inference_steps, guidance_scale],
|
165 |
outputs=[result, seed],
|
166 |
)
|
167 |
|