import gradio as gr import numpy as np import random import torch import time from diffusers import DiffusionPipeline # Set the device and dtype dtype = torch.float16 device = "cuda" if torch.cuda.is_available() else "cpu" # Load the diffusion pipeline pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)): start_time = time.time() if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE: raise ValueError("Image size exceeds the maximum allowed dimensions.") if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) try: image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale ).images[0] except Exception as e: print(f"Error generating image: {e}") return None, seed, f"Error: {str(e)}" if time.time() - start_time > 60: return None, seed, "Image generation took too long and was cancelled." return image, seed, None examples = [ ["a tiny astronaut hatching from an egg on the moon"], ["a cat holding a sign that says hello world"], ["an anime illustration of a wiener schnitzel"], ] with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown(""" # Custom Image Creator 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1)] """) with gr.Row(): with gr.Column(scale=2): prompt = gr.Textbox( label="Prompt", placeholder="Enter your prompt", lines=3 ) run_button = gr.Button("Generate Image", variant="primary") with gr.Column(scale=2): result = gr.Image(label="Generated Image") seed_output = gr.Number(label="Seed Used") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) with gr.Row(): num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=4) guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=20.0, step=0.5, value=7.5) gr.Examples( examples=examples, inputs=[prompt], outputs=[result, seed_output], fn=infer, cache_examples=True ) run_button.click( fn=infer, inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps, guidance_scale], outputs=[result, seed_output] ) gr.Markdown(""" ## Save Your Image Right-click on the generated image and select 'Save image as' to download it. """) if __name__ == "__main__": demo.launch()