Spaces:
Runtime error
Runtime error
add custom training loop
Browse files
source/services/ner/train/train.py
CHANGED
@@ -11,12 +11,24 @@ notebook_login()
|
|
11 |
|
12 |
"""
|
13 |
import datasets
|
|
|
|
|
|
|
14 |
|
15 |
dataset = datasets.load_dataset("json", data_files="data/ner_input_data/ner_dataset.json")
|
16 |
|
17 |
# Convert ner_tag list of string to sequence of classlabels as expected by hugging face for target var https://discuss.huggingface.co/t/sequence-features-class-label-cast/44638/3
|
18 |
def get_label_list(labels):
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
unique_labels = set()
|
21 |
for label in labels:
|
22 |
unique_labels = unique_labels | set(label)
|
@@ -66,6 +78,17 @@ inputs.tokens()
|
|
66 |
inputs.word_ids()
|
67 |
|
68 |
def align_labels_with_tokens(labels, word_ids):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
new_labels = []
|
70 |
current_word = None
|
71 |
for word_id in word_ids:
|
@@ -93,6 +116,14 @@ print(labels)
|
|
93 |
print(align_labels_with_tokens(labels, word_ids))
|
94 |
|
95 |
def tokenize_and_align_labels(examples):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
tokenized_inputs = tokenizer(
|
97 |
examples["tokens"], truncation=True, is_split_into_words=True
|
98 |
)
|
@@ -111,8 +142,6 @@ tokenized_datasets = raw_datasets.map(
|
|
111 |
remove_columns=raw_datasets["train"].column_names,
|
112 |
)
|
113 |
|
114 |
-
from transformers import DataCollatorForTokenClassification
|
115 |
-
|
116 |
data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
|
117 |
|
118 |
batch = data_collator([tokenized_datasets["train"][i] for i in range(2)])
|
@@ -122,8 +151,6 @@ for i in range(2):
|
|
122 |
print(tokenized_datasets["train"][i]["labels"])
|
123 |
|
124 |
|
125 |
-
import evaluate
|
126 |
-
|
127 |
metric = evaluate.load("seqeval")
|
128 |
|
129 |
labels = raw_datasets["train"][0]["ner_tags"]
|
@@ -134,7 +161,7 @@ predictions = labels.copy()
|
|
134 |
predictions[2] = "O"
|
135 |
metric.compute(predictions=[predictions], references=[labels])
|
136 |
|
137 |
-
|
138 |
|
139 |
|
140 |
def compute_metrics(eval_preds):
|
@@ -158,8 +185,8 @@ def compute_metrics(eval_preds):
|
|
158 |
id2label = {i: label for i, label in enumerate(label_names)}
|
159 |
label2id = {v: k for k, v in id2label.items()}
|
160 |
|
161 |
-
from transformers import AutoModelForTokenClassification
|
162 |
|
|
|
163 |
model = AutoModelForTokenClassification.from_pretrained(
|
164 |
model_checkpoint,
|
165 |
id2label=id2label,
|
@@ -169,20 +196,16 @@ model = AutoModelForTokenClassification.from_pretrained(
|
|
169 |
model.config.num_labels
|
170 |
|
171 |
|
172 |
-
|
173 |
-
from transformers import TrainingArguments
|
174 |
-
|
175 |
args = TrainingArguments(
|
176 |
output_dir="source/services/ner/model/hf_tokenclassification/bert-finetuned-legalentity-ner",
|
177 |
evaluation_strategy="epoch",
|
178 |
save_strategy="epoch",
|
179 |
learning_rate=2e-5,
|
180 |
-
num_train_epochs=
|
181 |
weight_decay=0.01,
|
182 |
push_to_hub=True,
|
183 |
)
|
184 |
|
185 |
-
from transformers import Trainer
|
186 |
|
187 |
trainer = Trainer(
|
188 |
model=model,
|
@@ -196,7 +219,7 @@ trainer = Trainer(
|
|
196 |
trainer.train()
|
197 |
|
198 |
trainer.push_to_hub(commit_message="Training complete")
|
199 |
-
|
200 |
from torch.utils.data import DataLoader
|
201 |
|
202 |
train_dataloader = DataLoader(
|
@@ -241,11 +264,11 @@ lr_scheduler = get_scheduler(
|
|
241 |
|
242 |
from huggingface_hub import Repository, get_full_repo_name
|
243 |
|
244 |
-
model_name = "bert-finetuned-ner-accelerate"
|
245 |
repo_name = get_full_repo_name(model_name)
|
246 |
repo_name
|
247 |
|
248 |
-
output_dir = "bert-finetuned-ner-accelerate"
|
249 |
repo = Repository(output_dir, clone_from=repo_name)
|
250 |
|
251 |
def postprocess(predictions, labels):
|
@@ -327,4 +350,4 @@ model_checkpoint = "aimlnerd/bert-finetuned-legalentity-ner"
|
|
327 |
token_classifier = pipeline(
|
328 |
"token-classification", model=model_checkpoint, aggregation_strategy="simple"
|
329 |
)
|
330 |
-
token_classifier("My name is
|
|
|
11 |
|
12 |
"""
|
13 |
import datasets
|
14 |
+
import evaluate
|
15 |
+
import numpy as np
|
16 |
+
from transformers import Trainer, AutoModelForTokenClassification, TrainingArguments, DataCollatorForTokenClassification
|
17 |
|
18 |
dataset = datasets.load_dataset("json", data_files="data/ner_input_data/ner_dataset.json")
|
19 |
|
20 |
# Convert ner_tag list of string to sequence of classlabels as expected by hugging face for target var https://discuss.huggingface.co/t/sequence-features-class-label-cast/44638/3
|
21 |
def get_label_list(labels):
|
22 |
+
"""Create list of ner labels to create ClassLabel
|
23 |
+
|
24 |
+
Args:
|
25 |
+
labels (_type_): ner label column in the dataset
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
_type_: unique NER labels
|
29 |
+
https://github.com/huggingface/transformers/blob/66fd3a8d626a32989f4569260db32785c6cbf42a/examples/pytorch/token-classification/run_ner.py#L320
|
30 |
+
"""
|
31 |
+
|
32 |
unique_labels = set()
|
33 |
for label in labels:
|
34 |
unique_labels = unique_labels | set(label)
|
|
|
78 |
inputs.word_ids()
|
79 |
|
80 |
def align_labels_with_tokens(labels, word_ids):
|
81 |
+
"""Expand our label list to match the ##subtokens post tokenization. Because tokenization adds ##subtokenz
|
82 |
+
Special tokens get a label of -100(ignored in the loss function)
|
83 |
+
For tokens inside a word but not at the beginning, we replace the B- with I-
|
84 |
+
|
85 |
+
Args:
|
86 |
+
labels (_type_): labels column
|
87 |
+
word_ids (_type_): word_ids
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
_type_: new labels
|
91 |
+
"""
|
92 |
new_labels = []
|
93 |
current_word = None
|
94 |
for word_id in word_ids:
|
|
|
116 |
print(align_labels_with_tokens(labels, word_ids))
|
117 |
|
118 |
def tokenize_and_align_labels(examples):
|
119 |
+
"""Tokenize and handle ##subword tokens
|
120 |
+
|
121 |
+
Args:
|
122 |
+
examples (_type_): _description_
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
_type_: _description_
|
126 |
+
"""
|
127 |
tokenized_inputs = tokenizer(
|
128 |
examples["tokens"], truncation=True, is_split_into_words=True
|
129 |
)
|
|
|
142 |
remove_columns=raw_datasets["train"].column_names,
|
143 |
)
|
144 |
|
|
|
|
|
145 |
data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
|
146 |
|
147 |
batch = data_collator([tokenized_datasets["train"][i] for i in range(2)])
|
|
|
151 |
print(tokenized_datasets["train"][i]["labels"])
|
152 |
|
153 |
|
|
|
|
|
154 |
metric = evaluate.load("seqeval")
|
155 |
|
156 |
labels = raw_datasets["train"][0]["ner_tags"]
|
|
|
161 |
predictions[2] = "O"
|
162 |
metric.compute(predictions=[predictions], references=[labels])
|
163 |
|
164 |
+
|
165 |
|
166 |
|
167 |
def compute_metrics(eval_preds):
|
|
|
185 |
id2label = {i: label for i, label in enumerate(label_names)}
|
186 |
label2id = {v: k for k, v in id2label.items()}
|
187 |
|
|
|
188 |
|
189 |
+
""" Uncomment to uses highlevel Trainer from huggingface instead of custom training loop
|
190 |
model = AutoModelForTokenClassification.from_pretrained(
|
191 |
model_checkpoint,
|
192 |
id2label=id2label,
|
|
|
196 |
model.config.num_labels
|
197 |
|
198 |
|
|
|
|
|
|
|
199 |
args = TrainingArguments(
|
200 |
output_dir="source/services/ner/model/hf_tokenclassification/bert-finetuned-legalentity-ner",
|
201 |
evaluation_strategy="epoch",
|
202 |
save_strategy="epoch",
|
203 |
learning_rate=2e-5,
|
204 |
+
num_train_epochs=6,
|
205 |
weight_decay=0.01,
|
206 |
push_to_hub=True,
|
207 |
)
|
208 |
|
|
|
209 |
|
210 |
trainer = Trainer(
|
211 |
model=model,
|
|
|
219 |
trainer.train()
|
220 |
|
221 |
trainer.push_to_hub(commit_message="Training complete")
|
222 |
+
"""
|
223 |
from torch.utils.data import DataLoader
|
224 |
|
225 |
train_dataloader = DataLoader(
|
|
|
264 |
|
265 |
from huggingface_hub import Repository, get_full_repo_name
|
266 |
|
267 |
+
model_name = "bert-finetuned-legalentity-ner-accelerate"
|
268 |
repo_name = get_full_repo_name(model_name)
|
269 |
repo_name
|
270 |
|
271 |
+
output_dir = "source/services/ner/model/hf_tokenclassification/bert-finetuned-legalentity-ner-accelerate"
|
272 |
repo = Repository(output_dir, clone_from=repo_name)
|
273 |
|
274 |
def postprocess(predictions, labels):
|
|
|
350 |
token_classifier = pipeline(
|
351 |
"token-classification", model=model_checkpoint, aggregation_strategy="simple"
|
352 |
)
|
353 |
+
token_classifier("My name is James Bond and I work at MI6 in London.")
|