aimlnerd commited on
Commit
7af04fd
1 Parent(s): eba92cd

add markdown to gradio

Browse files
Files changed (1) hide show
  1. gradio_ner.py +31 -1
gradio_ner.py CHANGED
@@ -84,9 +84,39 @@ def ner(text):
84
  output = ner_pipeline(text)
85
  return {"text": text, "entities": output}
86
 
87
- demo = gr.Interface(ner,
 
 
 
 
 
88
  gr.Textbox(placeholder="Enter text here..."),
89
  gr.HighlightedText(),
90
  examples=examples)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
 
 
 
 
 
92
  demo.launch(server_name=settings.SERVER_HOST, server_port=settings.PORT)
 
84
  output = ner_pipeline(text)
85
  return {"text": text, "entities": output}
86
 
87
+ css = '''
88
+ h1{margin-bottom: 0 !important}
89
+ '''
90
+
91
+ with gr.Blocks(css=css) as demo:
92
+ gr.Interface(ner,
93
  gr.Textbox(placeholder="Enter text here..."),
94
  gr.HighlightedText(),
95
  examples=examples)
96
+ gr.Markdown("""
97
+ # Extract Legal Entities from Insurance Documents using BERT transfomers
98
+
99
+ This space use fine tuned BERT transfomers for NER of legal entities in Life Insurance demand letters.
100
+
101
+ Dataset is publicly available here
102
+ https://github.com/aws-samples/aws-legal-entity-extraction.git
103
+
104
+ The model extracts the following entities:
105
+
106
+ * Law Firm
107
+ * Law Office Address
108
+ * Insurance Company
109
+ * Insurance Company Address
110
+ * Policy Holder Name
111
+ * Beneficiary Name
112
+ * Policy Number
113
+ * Payout
114
+ * Required Action
115
+ * Sender
116
 
117
+ Dataset consists of legal requisition/demand letters for Life Insurance, however this approach can be used across any industry & document which may benefit from spatial data in NER training.
118
+ ## Finetuning BERT Transformers model
119
+ ```source/services/ner/train/train.py```
120
+ This code fine tune the BERT model and uploads to huggingface
121
+ """)
122
  demo.launch(server_name=settings.SERVER_HOST, server_port=settings.PORT)