# -*- coding: utf-8 -*- """Token classification (PyTorch) Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/github/huggingface/notebooks/blob/master/course/en/chapter7/section2_pt.ipynb # Token classification (PyTorch) Install the Transformers, Datasets, and Evaluate libraries to run this notebook. """ !pip install datasets evaluate transformers[sentencepiece] !pip install accelerate """You will also need to be logged in to the Hugging Face Hub. Execute the following and enter your credentials.""" from huggingface_hub import notebook_login notebook_login() from datasets import load_dataset raw_datasets = load_dataset("conll2003") raw_datasets raw_datasets["train"][0]["tokens"] raw_datasets["train"][0]["ner_tags"] ner_feature = raw_datasets["train"].features["ner_tags"] ner_feature label_names = ner_feature.feature.names label_names words = raw_datasets["train"][0]["tokens"] labels = raw_datasets["train"][0]["ner_tags"] line1 = "" line2 = "" for word, label in zip(words, labels): full_label = label_names[label] max_length = max(len(word), len(full_label)) line1 += word + " " * (max_length - len(word) + 1) line2 += full_label + " " * (max_length - len(full_label) + 1) print(line1) print(line2) from transformers import AutoTokenizer model_checkpoint = "bert-base-cased" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) tokenizer.is_fast inputs = tokenizer(raw_datasets["train"][0]["tokens"], is_split_into_words=True) inputs.tokens() inputs.word_ids() def align_labels_with_tokens(labels, word_ids): new_labels = [] current_word = None for word_id in word_ids: if word_id != current_word: # Start of a new word! current_word = word_id label = -100 if word_id is None else labels[word_id] new_labels.append(label) elif word_id is None: # Special token new_labels.append(-100) else: # Same word as previous token label = labels[word_id] # If the label is B-XXX we change it to I-XXX if label % 2 == 1: label += 1 new_labels.append(label) return new_labels labels = raw_datasets["train"][0]["ner_tags"] word_ids = inputs.word_ids() print(labels) print(align_labels_with_tokens(labels, word_ids)) def tokenize_and_align_labels(examples): tokenized_inputs = tokenizer( examples["tokens"], truncation=True, is_split_into_words=True ) all_labels = examples["ner_tags"] new_labels = [] for i, labels in enumerate(all_labels): word_ids = tokenized_inputs.word_ids(i) new_labels.append(align_labels_with_tokens(labels, word_ids)) tokenized_inputs["labels"] = new_labels return tokenized_inputs tokenized_datasets = raw_datasets.map( tokenize_and_align_labels, batched=True, remove_columns=raw_datasets["train"].column_names, ) from transformers import DataCollatorForTokenClassification data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer) batch = data_collator([tokenized_datasets["train"][i] for i in range(2)]) batch["labels"] for i in range(2): print(tokenized_datasets["train"][i]["labels"]) !pip install seqeval import evaluate metric = evaluate.load("seqeval") labels = raw_datasets["train"][0]["ner_tags"] labels = [label_names[i] for i in labels] labels predictions = labels.copy() predictions[2] = "O" metric.compute(predictions=[predictions], references=[labels]) import numpy as np def compute_metrics(eval_preds): logits, labels = eval_preds predictions = np.argmax(logits, axis=-1) # Remove ignored index (special tokens) and convert to labels true_labels = [[label_names[l] for l in label if l != -100] for label in labels] true_predictions = [ [label_names[p] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] all_metrics = metric.compute(predictions=true_predictions, references=true_labels) return { "precision": all_metrics["overall_precision"], "recall": all_metrics["overall_recall"], "f1": all_metrics["overall_f1"], "accuracy": all_metrics["overall_accuracy"], } id2label = {i: label for i, label in enumerate(label_names)} label2id = {v: k for k, v in id2label.items()} from transformers import AutoModelForTokenClassification model = AutoModelForTokenClassification.from_pretrained( model_checkpoint, id2label=id2label, label2id=label2id, ) model.config.num_labels from huggingface_hub import notebook_login notebook_login() from transformers import TrainingArguments args = TrainingArguments( "bert-finetuned-ner", evaluation_strategy="epoch", save_strategy="epoch", learning_rate=2e-5, num_train_epochs=3, weight_decay=0.01, push_to_hub=True, ) from transformers import Trainer trainer = Trainer( model=model, args=args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["validation"], data_collator=data_collator, compute_metrics=compute_metrics, tokenizer=tokenizer, ) trainer.train() trainer.push_to_hub(commit_message="Training complete") from torch.utils.data import DataLoader train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=data_collator, batch_size=8, ) eval_dataloader = DataLoader( tokenized_datasets["validation"], collate_fn=data_collator, batch_size=8 ) model = AutoModelForTokenClassification.from_pretrained( model_checkpoint, id2label=id2label, label2id=label2id, ) from torch.optim import AdamW optimizer = AdamW(model.parameters(), lr=2e-5) from accelerate import Accelerator accelerator = Accelerator() model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) from transformers import get_scheduler num_train_epochs = 3 num_update_steps_per_epoch = len(train_dataloader) num_training_steps = num_train_epochs * num_update_steps_per_epoch lr_scheduler = get_scheduler( "linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps, ) from huggingface_hub import Repository, get_full_repo_name model_name = "bert-finetuned-ner-accelerate" repo_name = get_full_repo_name(model_name) repo_name output_dir = "bert-finetuned-ner-accelerate" repo = Repository(output_dir, clone_from=repo_name) def postprocess(predictions, labels): predictions = predictions.detach().cpu().clone().numpy() labels = labels.detach().cpu().clone().numpy() # Remove ignored index (special tokens) and convert to labels true_labels = [[label_names[l] for l in label if l != -100] for label in labels] true_predictions = [ [label_names[p] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] return true_labels, true_predictions from tqdm.auto import tqdm import torch progress_bar = tqdm(range(num_training_steps)) for epoch in range(num_train_epochs): # Training model.train() for batch in train_dataloader: outputs = model(**batch) loss = outputs.loss accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) # Evaluation model.eval() for batch in eval_dataloader: with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) labels = batch["labels"] # Necessary to pad predictions and labels for being gathered predictions = accelerator.pad_across_processes(predictions, dim=1, pad_index=-100) labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100) predictions_gathered = accelerator.gather(predictions) labels_gathered = accelerator.gather(labels) true_predictions, true_labels = postprocess(predictions_gathered, labels_gathered) metric.add_batch(predictions=true_predictions, references=true_labels) results = metric.compute() print( f"epoch {epoch}:", { key: results[f"overall_{key}"] for key in ["precision", "recall", "f1", "accuracy"] }, ) # Save and upload accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save) if accelerator.is_main_process: tokenizer.save_pretrained(output_dir) repo.push_to_hub( commit_message=f"Training in progress epoch {epoch}", blocking=False ) accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save) from transformers import pipeline # Replace this with your own checkpoint model_checkpoint = "huggingface-course/bert-finetuned-ner" token_classifier = pipeline( "token-classification", model=model_checkpoint, aggregation_strategy="simple" ) token_classifier("My name is Sylvain and I work at Hugging Face in Brooklyn.")