aino-capm
commited on
Commit
•
6e757a0
1
Parent(s):
371b54a
second
Browse files- app.py +31 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import BertJapaneseTokenizer, BertForSequenceClassification
|
4 |
+
|
5 |
+
# 日本語の事前学習モデル
|
6 |
+
MODEL_NAME = 'cl-tohoku/bert-base-japanese-whole-word-masking'
|
7 |
+
descriptions = '''BERTをchABSA-datasetでファインチューニングしたもの。
|
8 |
+
chABSA-datasetは上場企業の有価証券報告書をベースに作成されたネガポジ用データセット'''
|
9 |
+
|
10 |
+
tokenizer = BertJapaneseTokenizer.from_pretrained(MODEL_NAME)
|
11 |
+
bert_sc_ = BertForSequenceClassification.from_pretrained("models/")
|
12 |
+
bert_sc = bert_sc_.to("cpu")
|
13 |
+
|
14 |
+
def func(text):
|
15 |
+
encoding = tokenizer(
|
16 |
+
text,
|
17 |
+
padding = "longest",
|
18 |
+
return_tensors="pt"
|
19 |
+
)
|
20 |
+
encoding = { k : v.cpu() for k, v in encoding.items()}
|
21 |
+
|
22 |
+
with torch.no_grad():
|
23 |
+
output = bert_sc(**encoding)
|
24 |
+
scores = output.logits.argmax(-1)
|
25 |
+
|
26 |
+
label = "ネガティブ" if scores.item()==0 else "ポジティブ"
|
27 |
+
|
28 |
+
return label,text
|
29 |
+
|
30 |
+
app = gr.Interface(fn=func, inputs="text", outputs=["label","text"], title="ビジネス文書/ネガポジ分析", description=descriptions)
|
31 |
+
app.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers==4.20.0
|
3 |
+
sentencepiece
|