Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ from transformers import BertJapaneseTokenizer, BertForSequenceClassification
|
|
4 |
|
5 |
# 日本語の事前学習モデル
|
6 |
MODEL_NAME = 'cl-tohoku/bert-base-japanese-whole-word-masking'
|
7 |
-
descriptions = '''BERT
|
8 |
|
9 |
tokenizer = BertJapaneseTokenizer.from_pretrained(MODEL_NAME)
|
10 |
bert_sc_ = BertForSequenceClassification.from_pretrained("models/")
|
@@ -29,5 +29,5 @@ def func(text):
|
|
29 |
|
30 |
return label,cos
|
31 |
|
32 |
-
app = gr.Interface(fn=func, inputs=gr.Textbox(lines=3, placeholder="文章を入力してください"), outputs=["label","label"], title="Sentiment Analysis
|
33 |
app.launch()
|
|
|
4 |
|
5 |
# 日本語の事前学習モデル
|
6 |
MODEL_NAME = 'cl-tohoku/bert-base-japanese-whole-word-masking'
|
7 |
+
descriptions = '''BERTを用いたビジネス文書のネガポジ判定。文章を入力すると、その文章のネガポジ判定と判定の信頼度を表示します。'''
|
8 |
|
9 |
tokenizer = BertJapaneseTokenizer.from_pretrained(MODEL_NAME)
|
10 |
bert_sc_ = BertForSequenceClassification.from_pretrained("models/")
|
|
|
29 |
|
30 |
return label,cos
|
31 |
|
32 |
+
app = gr.Interface(fn=func, inputs=gr.Textbox(lines=3, placeholder="文章を入力してください"), outputs=["label","label"], title="Sentiment Analysis of Business Documents", description=descriptions)
|
33 |
app.launch()
|