KarthickAdopleAI commited on
Commit
657c6ff
1 Parent(s): d1bdc26

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -5
app.py CHANGED
@@ -1,4 +1,5 @@
1
- import openai
 
2
  import os
3
  import pdfplumber
4
  from langchain.chains.mapreduce import MapReduceChain
@@ -44,7 +45,11 @@ class KeyValueExtractor:
44
  pdf_file_path (str): The path to the input PDF file.
45
  """
46
  self.model = "facebook/bart-large-mnli"
47
- self.client = OpenAI()
 
 
 
 
48
 
49
 
50
  def get_url(self,keyword):
@@ -100,7 +105,7 @@ class KeyValueExtractor:
100
 
101
  # Load the summarization chain using the ChatOpenAI language model
102
  chain = load_summarize_chain(
103
- llm = ChatOpenAI(temperature=0),
104
  chain_type="refine",
105
  question_prompt=prompt,
106
  refine_prompt=refine_prompt,
@@ -116,6 +121,7 @@ class KeyValueExtractor:
116
  return result["output_text"]
117
 
118
  def one_day_summary(self,content) -> None:
 
119
  conversation = [
120
  {"role": "system", "content": "You are a helpful assistant."},
121
  {"role": "user", "content": f"i want detailed Summary from given finance details. i want information like what happen today comparing last day good or bad Bullish or Bearish like these details i want summary. content in backticks.```{content}```."}
@@ -123,7 +129,7 @@ class KeyValueExtractor:
123
 
124
  # Call OpenAI GPT-3.5-turbo
125
  chat_completion = self.client.chat.completions.create(
126
- model = "gpt-3.5-turbo",
127
  messages = conversation,
128
  max_tokens=1000,
129
  temperature=0
@@ -322,7 +328,7 @@ class KeyValueExtractor:
322
 
323
  # Load the summarization chain using the ChatOpenAI language model
324
  chain = load_summarize_chain(
325
- llm = ChatOpenAI(temperature=0),
326
  chain_type="refine",
327
  question_prompt=prompt,
328
  refine_prompt=refine_prompt,
 
1
+ os.system("pip install langchain-openai")
2
+ from langchain_openai import AzureChatOpenAI
3
  import os
4
  import pdfplumber
5
  from langchain.chains.mapreduce import MapReduceChain
 
45
  pdf_file_path (str): The path to the input PDF file.
46
  """
47
  self.model = "facebook/bart-large-mnli"
48
+ self.client = AzureOpenAI(api_key=os.getenv("AZURE_OPENAI_KEY"),
49
+ api_version="2023-07-01-preview",
50
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
51
+ )
52
+
53
 
54
 
55
  def get_url(self,keyword):
 
105
 
106
  # Load the summarization chain using the ChatOpenAI language model
107
  chain = load_summarize_chain(
108
+ llm = AzureChatOpenAI(azure_deployment = "ChatGPT"),
109
  chain_type="refine",
110
  question_prompt=prompt,
111
  refine_prompt=refine_prompt,
 
121
  return result["output_text"]
122
 
123
  def one_day_summary(self,content) -> None:
124
+
125
  conversation = [
126
  {"role": "system", "content": "You are a helpful assistant."},
127
  {"role": "user", "content": f"i want detailed Summary from given finance details. i want information like what happen today comparing last day good or bad Bullish or Bearish like these details i want summary. content in backticks.```{content}```."}
 
129
 
130
  # Call OpenAI GPT-3.5-turbo
131
  chat_completion = self.client.chat.completions.create(
132
+ model = "ChatGPT",
133
  messages = conversation,
134
  max_tokens=1000,
135
  temperature=0
 
328
 
329
  # Load the summarization chain using the ChatOpenAI language model
330
  chain = load_summarize_chain(
331
+ llm = AzureChatOpenAI(azure_deployment = "ChatGPT"),
332
  chain_type="refine",
333
  question_prompt=prompt,
334
  refine_prompt=refine_prompt,