File size: 7,764 Bytes
2f4febc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

import os
import yaml
import torch
from tqdm import tqdm
import sys
sys.path.append(os.path.abspath('./'))
from inference.utils import *
from train import WurstCoreB
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
from train import WurstCore_personalized as WurstCoreC
import torch.nn.functional as F
import numpy as np
import random
import math
import argparse


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument( '--height', type=int, default=3072, help='image height')
    parser.add_argument('--width', type=int, default=4096, help='image width')
    parser.add_argument('--dtype', type=str, default='bf16', help=' if bf16 does not work, change it to float32 ')
    parser.add_argument('--seed', type=int, default=23, help='random seed')
    parser.add_argument('--config_c', type=str, 
    default="configs/training/lora_personalization.yaml" ,help='config file for stage c, latent generation')
    parser.add_argument('--config_b', type=str, 
    default='configs/inference/stage_b_1b.yaml' ,help='config file for stage b, latent decoding')
    parser.add_argument( '--prompt', type=str,
     default='A photo of cat [roubaobao] with sunglasses, Time Square in the background, high quality, detail rich, 8k', help='text prompt')
    parser.add_argument( '--num_image', type=int, default=4, help='how many images generated')
    parser.add_argument( '--output_dir', type=str, default='figures/personalized/', help='output directory for generated image')
    parser.add_argument( '--stage_a_tiled', action='store_true', help='whther or nor to use tiled decoding for stage a to save memory')
    parser.add_argument( '--pretrained_path_lora', type=str, default='models/lora_cat.safetensors',help='pretrained path of personalized lora parameter')
    parser.add_argument( '--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added paramter of UltraPixel')
    args = parser.parse_args()
    return args

if __name__ == "__main__":
    args = parse_args()
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    torch.manual_seed(args.seed)
    random.seed(args.seed)
    np.random.seed(args.seed)
    dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
    
    
    # SETUP STAGE C
    with open(args.config_c, "r", encoding="utf-8") as file:
        loaded_config = yaml.safe_load(file)
    core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
    
    # SETUP STAGE B
    with open(args.config_b, "r", encoding="utf-8") as file:
        config_file_b = yaml.safe_load(file)    
    core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
    
    extras = core.setup_extras_pre()
    models = core.setup_models(extras)
    models.generator.eval().requires_grad_(False)
    print("STAGE C READY")
    
    extras_b = core_b.setup_extras_pre()
    models_b = core_b.setup_models(extras_b, skip_clip=True)
    models_b = WurstCoreB.Models(
       **{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
    )
    models_b.generator.bfloat16().eval().requires_grad_(False)
    print("STAGE B READY")
    
    
    batch_size = 1
    captions = [args.prompt] * args.num_image
    height, width = args.height, args.width
    save_dir = args.output_dir
    
    if not os.path.exists(save_dir):
      os.makedirs(save_dir)
     
    
    pretrained_pth = args.pretrained_path
    sdd = torch.load(pretrained_pth, map_location='cpu')
    collect_sd = {}
    for k, v in sdd.items():
        collect_sd[k[7:]] = v
    
    models.train_norm.load_state_dict(collect_sd)
    
    
    pretrained_pth_lora = args.pretrained_path_lora
    sdd = torch.load(pretrained_pth_lora, map_location='cpu')
    collect_sd = {}
    for k, v in sdd.items():
        collect_sd[k[7:]] = v
    
    models.train_lora.load_state_dict(collect_sd)
    
    
    models.generator.eval()
    models.train_norm.eval()
    
    
    height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
    stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
    stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
    
    # Stage C Parameters
    
    extras.sampling_configs['cfg'] = 4
    extras.sampling_configs['shift'] = 1
    extras.sampling_configs['timesteps'] = 20
    extras.sampling_configs['t_start'] = 1.0
    extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
    
    
    
    # Stage B Parameters
    
    extras_b.sampling_configs['cfg'] = 1.1
    extras_b.sampling_configs['shift'] = 1
    extras_b.sampling_configs['timesteps'] = 10
    extras_b.sampling_configs['t_start'] = 1.0
    
    
    for cnt, caption in enumerate(captions):
    
        batch = {'captions': [caption] * batch_size}
        conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
        unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)    
        
        conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
        unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
        
        
        
        
        for cnt, caption in enumerate(captions):
    
           
            batch = {'captions': [caption] * batch_size}
            conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
            unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)    
            
            conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
            unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
            
             
            with torch.no_grad():
        
              
                models.generator.cuda()
                print('STAGE C GENERATION***************************')
                with torch.cuda.amp.autocast(dtype=dtype):
                    sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
                
                    
                      
                models.generator.cpu()
                torch.cuda.empty_cache()
                
                conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
                unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
                conditions_b['effnet'] = sampled_c
                unconditions_b['effnet'] = torch.zeros_like(sampled_c)
                print('STAGE B + A DECODING***************************')
        
                with torch.cuda.amp.autocast(dtype=dtype):
                  sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)

                torch.cuda.empty_cache()
                imgs = show_images(sampled)
                for idx, img in enumerate(imgs):
                    print(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'), idx)
                    img.save(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'))
                    
                
    print('finished! Results at ', save_dir )