File size: 15,370 Bytes
2f4febc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import torch
import torchvision
from torch import nn, optim
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
from warmup_scheduler import GradualWarmupScheduler

import sys
import os
import re
from dataclasses import dataclass

from gdf import GDF, EpsilonTarget, CosineSchedule
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
from torchtools.transforms import SmartCrop

from modules.effnet import EfficientNetEncoder
from modules.stage_c import StageC
from modules.stage_c import ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock
from modules.previewer import Previewer
from modules.lora import apply_lora, apply_retoken, LoRA, ReToken

from train.base import DataCore, TrainingCore

from core import WarpCore
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail

from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
import functools
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from contextlib import contextmanager


class WurstCore(TrainingCore, DataCore, WarpCore):
    @dataclass(frozen=True)
    class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config):
        # TRAINING PARAMS
        lr: float = EXPECTED_TRAIN
        warmup_updates: int = EXPECTED_TRAIN
        dtype: str = None

        # MODEL VERSION
        model_version: str = EXPECTED  # 3.6B or 1B
        clip_image_model_name: str = 'openai/clip-vit-large-patch14'
        clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k'

        # CHECKPOINT PATHS
        effnet_checkpoint_path: str = EXPECTED
        previewer_checkpoint_path: str = EXPECTED
        generator_checkpoint_path: str = None
        lora_checkpoint_path: str = None

        # LoRA STUFF
        module_filters: list = EXPECTED
        rank: int = EXPECTED
        train_tokens: list = EXPECTED

        # gdf customization
        adaptive_loss_weight: str = None

    @dataclass(frozen=True)
    class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models):
        effnet: nn.Module = EXPECTED
        previewer: nn.Module = EXPECTED
        lora: nn.Module = EXPECTED

    @dataclass(frozen=True)
    class Schedulers(WarpCore.Schedulers):
        lora: any = None

    @dataclass(frozen=True)
    class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras):
        gdf: GDF = EXPECTED
        sampling_configs: dict = EXPECTED
        effnet_preprocess: torchvision.transforms.Compose = EXPECTED

    @dataclass()  # not frozen, means that fields are mutable. Doesn't support EXPECTED
    class Info(TrainingCore.Info):
        train_tokens: list = None

    @dataclass(frozen=True)
    class Optimizers(TrainingCore.Optimizers, WarpCore.Optimizers):
        generator: any = None
        lora: any = EXPECTED

    # --------------------------------------------
    info: Info
    config: Config

    # Extras: gdf, transforms and preprocessors --------------------------------
    def setup_extras_pre(self) -> Extras:
        gdf = GDF(
            schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
            input_scaler=VPScaler(), target=EpsilonTarget(),
            noise_cond=CosineTNoiseCond(),
            loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(),
        )
        sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20}

        if self.info.adaptive_loss is not None:
            gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges'])
            gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses'])

        effnet_preprocess = torchvision.transforms.Compose([
            torchvision.transforms.Normalize(
                mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
            )
        ])

        clip_preprocess = torchvision.transforms.Compose([
            torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC),
            torchvision.transforms.CenterCrop(224),
            torchvision.transforms.Normalize(
                mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)
            )
        ])

        if self.config.training:
            transforms = torchvision.transforms.Compose([
                torchvision.transforms.ToTensor(),
                torchvision.transforms.Resize(self.config.image_size, interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True),
                SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2)
            ])
        else:
            transforms = None

        return self.Extras(
            gdf=gdf,
            sampling_configs=sampling_configs,
            transforms=transforms,
            effnet_preprocess=effnet_preprocess,
            clip_preprocess=clip_preprocess
        )

    # Data --------------------------------
    def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False,
                       eval_image_embeds=False, return_fields=None):
        conditions = super().get_conditions(
            batch, models, extras, is_eval, is_unconditional,
            eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img']
        )
        return conditions

    # Models, Optimizers & Schedulers setup --------------------------------
    def setup_models(self, extras: Extras) -> Models:
        dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.float32

        # EfficientNet encoder
        effnet = EfficientNetEncoder().to(self.device)
        effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path)
        effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict'])
        effnet.eval().requires_grad_(False)
        del effnet_checkpoint

        # Previewer
        previewer = Previewer().to(self.device)
        previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path)
        previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict'])
        previewer.eval().requires_grad_(False)
        del previewer_checkpoint

        @contextmanager
        def dummy_context():
            yield None

        loading_context = dummy_context if self.config.training else init_empty_weights

        with loading_context():
            # Diffusion models
            if self.config.model_version == '3.6B':
                generator = StageC()
            elif self.config.model_version == '1B':
                generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
            else:
                raise ValueError(f"Unknown model version {self.config.model_version}")

        if self.config.generator_checkpoint_path is not None:
            if loading_context is dummy_context:
                generator.load_state_dict(load_or_fail(self.config.generator_checkpoint_path))
            else:
                for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items():
                    set_module_tensor_to_device(generator, param_name, "cpu", value=param)
        generator = generator.to(dtype).to(self.device)
        generator = self.load_model(generator, 'generator')

        # if self.config.use_fsdp:
        #     fsdp_auto_wrap_policy = functools.partial(size_based_auto_wrap_policy, min_num_params=3000)
        #     generator = FSDP(generator, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device)

        # CLIP encoders
        tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name)
        text_model = CLIPTextModelWithProjection.from_pretrained(self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device)
        image_model = CLIPVisionModelWithProjection.from_pretrained(self.config.clip_image_model_name).requires_grad_(False).to(dtype).to(self.device)

        # PREPARE LORA
        update_tokens = []
        for tkn_regex, aggr_regex in self.config.train_tokens:
            if (tkn_regex.startswith('[') and tkn_regex.endswith(']')) or (tkn_regex.startswith('<') and tkn_regex.endswith('>')):
                # Insert new token
                tokenizer.add_tokens([tkn_regex])
                # add new zeros embedding
                new_embedding = torch.zeros_like(text_model.text_model.embeddings.token_embedding.weight.data)[:1]
                if aggr_regex is not None:  # aggregate embeddings to provide an interesting baseline
                    aggr_tokens = [v for k, v in tokenizer.vocab.items() if re.search(aggr_regex, k) is not None]
                    if len(aggr_tokens) > 0:
                        new_embedding = text_model.text_model.embeddings.token_embedding.weight.data[aggr_tokens].mean(dim=0, keepdim=True)
                    elif self.is_main_node:
                        print(f"WARNING: No tokens found for aggregation regex {aggr_regex}. It will be initialized as zeros.")
                text_model.text_model.embeddings.token_embedding.weight.data = torch.cat([
                    text_model.text_model.embeddings.token_embedding.weight.data, new_embedding
                ], dim=0)
                selected_tokens = [len(tokenizer.vocab) - 1]
            else:
                selected_tokens = [v for k, v in tokenizer.vocab.items() if re.search(tkn_regex, k) is not None]
            update_tokens += selected_tokens
        update_tokens = list(set(update_tokens))  # remove duplicates

        apply_retoken(text_model.text_model.embeddings.token_embedding, update_tokens)
        apply_lora(generator, filters=self.config.module_filters, rank=self.config.rank)
        text_model.text_model.to(self.device)
        generator.to(self.device)
        lora = nn.ModuleDict()
        lora['embeddings'] = text_model.text_model.embeddings.token_embedding.parametrizations.weight[0]
        lora['weights'] = nn.ModuleList()
        for module in generator.modules():
            if isinstance(module, LoRA) or (hasattr(module, '_fsdp_wrapped_module') and isinstance(module._fsdp_wrapped_module, LoRA)):
                lora['weights'].append(module)

        self.info.train_tokens = [(i, tokenizer.decode(i)) for i in update_tokens]
        if self.is_main_node:
            print("Updating tokens:", self.info.train_tokens)
            print(f"LoRA training {len(lora['weights'])} layers")

        if self.config.lora_checkpoint_path is not None:
            lora_checkpoint = load_or_fail(self.config.lora_checkpoint_path)
            lora.load_state_dict(lora_checkpoint if 'state_dict' not in lora_checkpoint else lora_checkpoint['state_dict'])

        lora = self.load_model(lora, 'lora')
        lora.to(self.device).train().requires_grad_(True)
        if self.config.use_fsdp:
            # fsdp_auto_wrap_policy = functools.partial(size_based_auto_wrap_policy, min_num_params=3000)
            fsdp_auto_wrap_policy = ModuleWrapPolicy([LoRA, ReToken])
            lora = FSDP(lora, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device)

        return self.Models(
            effnet=effnet, previewer=previewer,
            generator=generator, generator_ema=None,
            lora=lora,
            tokenizer=tokenizer, text_model=text_model, image_model=image_model
        )

    def setup_optimizers(self, extras: Extras, models: Models) -> Optimizers:
        optimizer = optim.AdamW(models.lora.parameters(), lr=self.config.lr)  # , eps=1e-7, betas=(0.9, 0.95))
        optimizer = self.load_optimizer(optimizer, 'lora_optim',
                                        fsdp_model=models.lora if self.config.use_fsdp else None)
        return self.Optimizers(generator=None, lora=optimizer)

    def setup_schedulers(self, extras: Extras, models: Models, optimizers: Optimizers) -> Schedulers:
        scheduler = GradualWarmupScheduler(optimizers.lora, multiplier=1, total_epoch=self.config.warmup_updates)
        scheduler.last_epoch = self.info.total_steps
        return self.Schedulers(lora=scheduler)

    def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models):
        batch = next(data.iterator)

        conditions = self.get_conditions(batch, models, extras)
        with torch.no_grad():
            latents = self.encode_latents(batch, models, extras)
            noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1)

        with torch.cuda.amp.autocast(dtype=torch.bfloat16):
            pred = models.generator(noised, noise_cond, **conditions)
            loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3])
            loss_adjusted = (loss * loss_weight).mean() / self.config.grad_accum_steps

        if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
            extras.gdf.loss_weight.update_buckets(logSNR, loss)

        return loss, loss_adjusted

    def backward_pass(self, update, loss, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers, schedulers: Schedulers):
        if update:
            loss_adjusted.backward()
            grad_norm = nn.utils.clip_grad_norm_(models.lora.parameters(), 1.0)
            optimizers_dict = optimizers.to_dict()
            for k in optimizers_dict:
                if optimizers_dict[k] is not None and k != 'training':
                    optimizers_dict[k].step()
            schedulers_dict = schedulers.to_dict()
            for k in schedulers_dict:
                if k != 'training':
                    schedulers_dict[k].step()
            for k in optimizers_dict:
                if optimizers_dict[k] is not None and k != 'training':
                    optimizers_dict[k].zero_grad(set_to_none=True)
            self.info.total_steps += 1
        else:
            loss_adjusted.backward()
            grad_norm = torch.tensor(0.0).to(self.device)

        return grad_norm

    def models_to_save(self):
        return ['lora']

    def sample(self, models: Models, data: WarpCore.Data, extras: Extras):
        models.lora.eval()
        super().sample(models, data, extras)
        models.lora.train(), models.generator.eval()

    def encode_latents(self, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
        images = batch['images'].to(self.device)
        return models.effnet(extras.effnet_preprocess(images))

    def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
        return models.previewer(latents)


if __name__ == '__main__':
    print("Launching Script")
    warpcore = WurstCore(
        config_file_path=sys.argv[1] if len(sys.argv) > 1 else None,
        device=torch.device(int(os.environ.get("SLURM_LOCALID")))
    )
    warpcore.fsdp_defaults['sharding_strategy'] = ShardingStrategy.NO_SHARD

    # RUN TRAINING
    warpcore()