Spaces:
Running
on
Zero
Running
on
Zero
File size: 39,847 Bytes
2f4febc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 |
import torch
import json
import yaml
import torchvision
from torch import nn, optim
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
from warmup_scheduler import GradualWarmupScheduler
import torch.multiprocessing as mp
import os
import numpy as np
import re
import sys
sys.path.append(os.path.abspath('./'))
from dataclasses import dataclass
from torch.distributed import init_process_group, destroy_process_group, barrier
from gdf import GDF_dual_fixlrt as GDF
from gdf import EpsilonTarget, CosineSchedule
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
from torchtools.transforms import SmartCrop
from fractions import Fraction
from modules.effnet import EfficientNetEncoder
from modules.model_4stage_lite import StageC, ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock
from modules.common_ckpt import GlobalResponseNorm
from modules.previewer import Previewer
from core.data import Bucketeer
from train.base import DataCore, TrainingCore
from tqdm import tqdm
from core import WarpCore
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from contextlib import contextmanager
from train.dist_core import *
import glob
from torch.utils.data import DataLoader, Dataset
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from PIL import Image
from core.utils import EXPECTED, EXPECTED_TRAIN, update_weights_ema, create_folder_if_necessary
from core.utils import Base
import torch.nn.functional as F
import functools
import math
import copy
import random
from modules.lora import apply_lora, apply_retoken, LoRA, ReToken
Image.MAX_IMAGE_PIXELS = None
torch.manual_seed(23)
random.seed(23)
np.random.seed(23)
#7978026
class Null_Model(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
pass
def identity(x):
if isinstance(x, bytes):
x = x.decode('utf-8')
return x
def check_nan_inmodel(model, meta=''):
for name, param in model.named_parameters():
if torch.isnan(param).any():
print(f"nan detected in {name}", meta)
return True
print('no nan', meta)
return False
class mydist_dataset(Dataset):
def __init__(self, rootpath, tmp_prompt, img_processor=None):
self.img_pathlist = glob.glob(os.path.join(rootpath, '*.jpg'))
self.img_pathlist = self.img_pathlist * 100000
self.img_processor = img_processor
self.length = len( self.img_pathlist)
self.caption = tmp_prompt
def __getitem__(self, idx):
imgpath = self.img_pathlist[idx]
txt = self.caption
try:
img = Image.open(imgpath).convert('RGB')
w, h = img.size
if self.img_processor is not None:
img = self.img_processor(img)
except:
print('exception', imgpath)
return self.__getitem__(random.randint(0, self.length -1 ) )
return dict(captions=txt, images=img)
def __len__(self):
return self.length
class WurstCore(TrainingCore, DataCore, WarpCore):
@dataclass(frozen=True)
class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config):
# TRAINING PARAMS
lr: float = EXPECTED_TRAIN
warmup_updates: int = EXPECTED_TRAIN
dtype: str = None
# MODEL VERSION
model_version: str = EXPECTED # 3.6B or 1B
clip_image_model_name: str = 'openai/clip-vit-large-patch14'
clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k'
# CHECKPOINT PATHS
effnet_checkpoint_path: str = EXPECTED
previewer_checkpoint_path: str = EXPECTED
generator_checkpoint_path: str = None
ultrapixel_path: str = EXPECTED
# gdf customization
adaptive_loss_weight: str = None
# LoRA STUFF
module_filters: list = EXPECTED
rank: int = EXPECTED
train_tokens: list = EXPECTED
use_ddp: bool=EXPECTED
tmp_prompt: str=EXPECTED
@dataclass(frozen=True)
class Data(Base):
dataset: Dataset = EXPECTED
dataloader: DataLoader = EXPECTED
iterator: any = EXPECTED
sampler: DistributedSampler = EXPECTED
@dataclass(frozen=True)
class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models):
effnet: nn.Module = EXPECTED
previewer: nn.Module = EXPECTED
train_norm: nn.Module = EXPECTED
train_lora: nn.Module = EXPECTED
@dataclass(frozen=True)
class Schedulers(WarpCore.Schedulers):
generator: any = None
@dataclass(frozen=True)
class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras):
gdf: GDF = EXPECTED
sampling_configs: dict = EXPECTED
effnet_preprocess: torchvision.transforms.Compose = EXPECTED
info: TrainingCore.Info
config: Config
def setup_extras_pre(self) -> Extras:
gdf = GDF(
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
input_scaler=VPScaler(), target=EpsilonTarget(),
noise_cond=CosineTNoiseCond(),
loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(),
)
sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20}
if self.info.adaptive_loss is not None:
gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges'])
gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses'])
effnet_preprocess = torchvision.transforms.Compose([
torchvision.transforms.Normalize(
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
)
])
clip_preprocess = torchvision.transforms.Compose([
torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.Normalize(
mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)
)
])
if self.config.training:
transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize(self.config.image_size[-1], interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True),
SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2)
])
else:
transforms = None
return self.Extras(
gdf=gdf,
sampling_configs=sampling_configs,
transforms=transforms,
effnet_preprocess=effnet_preprocess,
clip_preprocess=clip_preprocess
)
def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False,
eval_image_embeds=False, return_fields=None):
conditions = super().get_conditions(
batch, models, extras, is_eval, is_unconditional,
eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img']
)
return conditions
def setup_models(self, extras: Extras) -> Models: # configure model
dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.bfloat16
# EfficientNet encoderin
effnet = EfficientNetEncoder()
effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path)
effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict'])
effnet.eval().requires_grad_(False).to(self.device)
del effnet_checkpoint
# Previewer
previewer = Previewer()
previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path)
previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict'])
previewer.eval().requires_grad_(False).to(self.device)
del previewer_checkpoint
@contextmanager
def dummy_context():
yield None
loading_context = dummy_context if self.config.training else init_empty_weights
# Diffusion models
with loading_context():
generator_ema = None
if self.config.model_version == '3.6B':
generator = StageC()
if self.config.ema_start_iters is not None: # default setting
generator_ema = StageC()
elif self.config.model_version == '1B':
print('in line 155 1b light model', self.config.model_version )
generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
if self.config.ema_start_iters is not None and self.config.training:
generator_ema = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
else:
raise ValueError(f"Unknown model version {self.config.model_version}")
if loading_context is dummy_context:
generator.load_state_dict( load_or_fail(self.config.generator_checkpoint_path))
else:
for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items():
set_module_tensor_to_device(generator, param_name, "cpu", value=param)
generator._init_extra_parameter()
generator = generator.to(torch.bfloat16).to(self.device)
train_norm = nn.ModuleList()
cnt_norm = 0
for mm in generator.modules():
if isinstance(mm, GlobalResponseNorm):
train_norm.append(Null_Model())
cnt_norm += 1
train_norm.append(generator.agg_net)
train_norm.append(generator.agg_net_up)
sdd = torch.load(self.config.ultrapixel_path, map_location='cpu')
collect_sd = {}
for k, v in sdd.items():
collect_sd[k[7:]] = v
train_norm.load_state_dict(collect_sd)
# CLIP encoders
tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name)
text_model = CLIPTextModelWithProjection.from_pretrained( self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device)
image_model = CLIPVisionModelWithProjection.from_pretrained(self.config.clip_image_model_name).requires_grad_(False).to(dtype).to(self.device)
# PREPARE LORA
train_lora = nn.ModuleList()
update_tokens = []
for tkn_regex, aggr_regex in self.config.train_tokens:
if (tkn_regex.startswith('[') and tkn_regex.endswith(']')) or (tkn_regex.startswith('<') and tkn_regex.endswith('>')):
# Insert new token
tokenizer.add_tokens([tkn_regex])
# add new zeros embedding
new_embedding = torch.zeros_like(text_model.text_model.embeddings.token_embedding.weight.data)[:1]
if aggr_regex is not None: # aggregate embeddings to provide an interesting baseline
aggr_tokens = [v for k, v in tokenizer.vocab.items() if re.search(aggr_regex, k) is not None]
if len(aggr_tokens) > 0:
new_embedding = text_model.text_model.embeddings.token_embedding.weight.data[aggr_tokens].mean(dim=0, keepdim=True)
elif self.is_main_node:
print(f"WARNING: No tokens found for aggregation regex {aggr_regex}. It will be initialized as zeros.")
text_model.text_model.embeddings.token_embedding.weight.data = torch.cat([
text_model.text_model.embeddings.token_embedding.weight.data, new_embedding
], dim=0)
selected_tokens = [len(tokenizer.vocab) - 1]
else:
selected_tokens = [v for k, v in tokenizer.vocab.items() if re.search(tkn_regex, k) is not None]
update_tokens += selected_tokens
update_tokens = list(set(update_tokens)) # remove duplicates
apply_retoken(text_model.text_model.embeddings.token_embedding, update_tokens)
apply_lora(generator, filters=self.config.module_filters, rank=self.config.rank)
for module in generator.modules():
if isinstance(module, LoRA) or (hasattr(module, '_fsdp_wrapped_module') and isinstance(module._fsdp_wrapped_module, LoRA)):
train_lora.append(module)
train_lora.append(text_model.text_model.embeddings.token_embedding.parametrizations.weight[0])
if os.path.exists(os.path.join(self.config.output_path, self.config.experiment_id, 'train_lora.safetensors')):
sdd = torch.load(os.path.join(self.config.output_path, self.config.experiment_id, 'train_lora.safetensors'), map_location='cpu')
collect_sd = {}
for k, v in sdd.items():
collect_sd[k[7:]] = v
train_lora.load_state_dict(collect_sd, strict=True)
train_norm.to(self.device).train().requires_grad_(True)
if generator_ema is not None:
generator_ema.load_state_dict(load_or_fail(self.config.generator_checkpoint_path))
generator_ema._init_extra_parameter()
pretrained_pth = os.path.join(self.config.output_path, self.config.experiment_id, 'generator.safetensors')
if os.path.exists(pretrained_pth):
generator_ema.load_state_dict(torch.load(pretrained_pth, map_location='cpu'))
generator_ema.eval().requires_grad_(False)
check_nan_inmodel(generator, 'generator')
if self.config.use_ddp and self.config.training:
train_lora = DDP(train_lora, device_ids=[self.device], find_unused_parameters=True)
return self.Models(
effnet=effnet, previewer=previewer, train_norm = train_norm,
generator=generator, generator_ema=generator_ema,
tokenizer=tokenizer, text_model=text_model, image_model=image_model,
train_lora=train_lora
)
def setup_optimizers(self, extras: Extras, models: Models) -> TrainingCore.Optimizers:
params = []
params += list(models.train_lora.module.parameters())
optimizer = optim.AdamW(params, lr=self.config.lr)
return self.Optimizers(generator=optimizer)
def ema_update(self, ema_model, source_model, beta):
for param_src, param_ema in zip(source_model.parameters(), ema_model.parameters()):
param_ema.data.mul_(beta).add_(param_src.data, alpha = 1 - beta)
def sync_ema(self, ema_model):
print('sync ema', torch.distributed.get_world_size())
for param in ema_model.parameters():
torch.distributed.all_reduce(param.data, op=torch.distributed.ReduceOp.SUM)
param.data /= torch.distributed.get_world_size()
def setup_optimizers_backup(self, extras: Extras, models: Models) -> TrainingCore.Optimizers:
optimizer = optim.AdamW(
models.generator.up_blocks.parameters() ,
lr=self.config.lr)
optimizer = self.load_optimizer(optimizer, 'generator_optim',
fsdp_model=models.generator if self.config.use_fsdp else None)
return self.Optimizers(generator=optimizer)
def setup_schedulers(self, extras: Extras, models: Models, optimizers: TrainingCore.Optimizers) -> Schedulers:
scheduler = GradualWarmupScheduler(optimizers.generator, multiplier=1, total_epoch=self.config.warmup_updates)
scheduler.last_epoch = self.info.total_steps
return self.Schedulers(generator=scheduler)
def setup_data(self, extras: Extras) -> WarpCore.Data:
# SETUP DATASET
dataset_path = self.config.webdataset_path
dataset = mydist_dataset(dataset_path, self.config.tmp_prompt, \
torchvision.transforms.ToTensor() if self.config.multi_aspect_ratio is not None \
else extras.transforms)
# SETUP DATALOADER
real_batch_size = self.config.batch_size // (self.world_size * self.config.grad_accum_steps)
sampler = DistributedSampler(dataset, rank=self.process_id, num_replicas = self.world_size, shuffle=True)
dataloader = DataLoader(
dataset, batch_size=real_batch_size, num_workers=4, pin_memory=True,
collate_fn=identity if self.config.multi_aspect_ratio is not None else None,
sampler = sampler
)
if self.is_main_node:
print(f"Training with batch size {self.config.batch_size} ({real_batch_size}/GPU)")
if self.config.multi_aspect_ratio is not None:
aspect_ratios = [float(Fraction(f)) for f in self.config.multi_aspect_ratio]
dataloader_iterator = Bucketeer(dataloader, density=[ss*ss for ss in self.config.image_size] , factor=32,
ratios=aspect_ratios, p_random_ratio=self.config.bucketeer_random_ratio,
interpolate_nearest=False) # , use_smartcrop=True)
else:
dataloader_iterator = iter(dataloader)
return self.Data(dataset=dataset, dataloader=dataloader, iterator=dataloader_iterator, sampler=sampler)
def setup_ddp(self, experiment_id, single_gpu=False, rank=0):
if not single_gpu:
local_rank = rank
process_id = rank
world_size = get_world_size()
self.process_id = process_id
self.is_main_node = process_id == 0
self.device = torch.device(local_rank)
self.world_size = world_size
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '14443'
torch.cuda.set_device(local_rank)
init_process_group(
backend="nccl",
rank=local_rank,
world_size=world_size,
# init_method=init_method,
)
print(f"[GPU {process_id}] READY")
else:
self.is_main_node = rank == 0
self.process_id = rank
self.device = torch.device('cuda:0')
self.world_size = 1
print("Running in single thread, DDP not enabled.")
# Training loop --------------------------------
def get_target_lr_size(self, ratio, std_size=24):
w, h = int(std_size / math.sqrt(ratio)), int(std_size * math.sqrt(ratio))
return (h * 32 , w * 32)
def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models):
batch = data
ratio = batch['images'].shape[-2] / batch['images'].shape[-1]
shape_lr = self.get_target_lr_size(ratio)
with torch.no_grad():
conditions = self.get_conditions(batch, models, extras)
latents = self.encode_latents(batch, models, extras)
latents_lr = self.encode_latents(batch, models, extras,target_size=shape_lr)
flag_lr = random.random() < 0.5 or self.info.iter <5000
if flag_lr:
noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents_lr, shift=1, loss_shift=1)
else:
noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1)
if not flag_lr:
noised_lr, noise_lr, target_lr, logSNR_lr, noise_cond_lr, loss_weight_lr = \
extras.gdf.diffuse(latents_lr, shift=1, loss_shift=1, t=torch.ones(latents.shape[0]).to(latents.device)*0.05, )
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
if not flag_lr:
with torch.no_grad():
_, lr_enc_guide, lr_dec_guide = models.generator(noised_lr, noise_cond_lr, reuire_f=True, **conditions)
pred = models.generator(noised, noise_cond, reuire_f=False, lr_guide=(lr_enc_guide, lr_dec_guide) if not flag_lr else None , **conditions)
loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3])
loss_adjusted = (loss * loss_weight ).mean() / self.config.grad_accum_steps
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
extras.gdf.loss_weight.update_buckets(logSNR, loss)
return loss, loss_adjusted
def backward_pass(self, update, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers, schedulers: Schedulers):
if update:
torch.distributed.barrier()
loss_adjusted.backward()
grad_norm = nn.utils.clip_grad_norm_(models.train_lora.module.parameters(), 1.0)
optimizers_dict = optimizers.to_dict()
for k in optimizers_dict:
if k != 'training':
optimizers_dict[k].step()
schedulers_dict = schedulers.to_dict()
for k in schedulers_dict:
if k != 'training':
schedulers_dict[k].step()
for k in optimizers_dict:
if k != 'training':
optimizers_dict[k].zero_grad(set_to_none=True)
self.info.total_steps += 1
else:
loss_adjusted.backward()
grad_norm = torch.tensor(0.0).to(self.device)
return grad_norm
def models_to_save(self):
return ['generator', 'generator_ema', 'trans_inr', 'trans_inr_ema']
def encode_latents(self, batch: dict, models: Models, extras: Extras, target_size=None) -> torch.Tensor:
images = batch['images'].to(self.device)
if target_size is not None:
images = F.interpolate(images, target_size)
return models.effnet(extras.effnet_preprocess(images))
def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
return models.previewer(latents)
def __init__(self, rank=0, config_file_path=None, config_dict=None, device="cpu", training=True, world_size=1, ):
self.is_main_node = (rank == 0)
self.config: self.Config = self.setup_config(config_file_path, config_dict, training)
self.setup_ddp(self.config.experiment_id, single_gpu=world_size <= 1, rank=rank)
self.info: self.Info = self.setup_info()
print('in line 292', self.config.experiment_id, rank, world_size <= 1)
p = [i for i in range( 2 * 768 // 32)]
p = [num / sum(p) for num in p]
self.rand_pro = p
self.res_list = [o for o in range(800, 2336, 32)]
def __call__(self, single_gpu=False):
if self.config.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
if self.is_main_node:
print()
print("**STARTIG JOB WITH CONFIG:**")
print(yaml.dump(self.config.to_dict(), default_flow_style=False))
print("------------------------------------")
print()
print("**INFO:**")
print(yaml.dump(vars(self.info), default_flow_style=False))
print("------------------------------------")
print()
print('in line 308', self.is_main_node, self.is_main_node, self.process_id, self.device )
# SETUP STUFF
extras = self.setup_extras_pre()
assert extras is not None, "setup_extras_pre() must return a DTO"
data = self.setup_data(extras)
assert data is not None, "setup_data() must return a DTO"
if self.is_main_node:
print("**DATA:**")
print(yaml.dump({k:type(v).__name__ for k, v in data.to_dict().items()}, default_flow_style=False))
print("------------------------------------")
print()
models = self.setup_models(extras)
assert models is not None, "setup_models() must return a DTO"
if self.is_main_node:
print("**MODELS:**")
print(yaml.dump({
k:f"{type(v).__name__} - {f'trainable params {sum(p.numel() for p in v.parameters() if p.requires_grad)}' if isinstance(v, nn.Module) else 'Not a nn.Module'}" for k, v in models.to_dict().items()
}, default_flow_style=False))
print("------------------------------------")
print()
optimizers = self.setup_optimizers(extras, models)
assert optimizers is not None, "setup_optimizers() must return a DTO"
if self.is_main_node:
print("**OPTIMIZERS:**")
print(yaml.dump({k:type(v).__name__ for k, v in optimizers.to_dict().items()}, default_flow_style=False))
print("------------------------------------")
print()
schedulers = self.setup_schedulers(extras, models, optimizers)
assert schedulers is not None, "setup_schedulers() must return a DTO"
if self.is_main_node:
print("**SCHEDULERS:**")
print(yaml.dump({k:type(v).__name__ for k, v in schedulers.to_dict().items()}, default_flow_style=False))
print("------------------------------------")
print()
post_extras =self.setup_extras_post(extras, models, optimizers, schedulers)
assert post_extras is not None, "setup_extras_post() must return a DTO"
extras = self.Extras.from_dict({ **extras.to_dict(),**post_extras.to_dict() })
if self.is_main_node:
print("**EXTRAS:**")
print(yaml.dump({k:f"{v}" for k, v in extras.to_dict().items()}, default_flow_style=False))
print("------------------------------------")
print()
# -------
# TRAIN
if self.is_main_node:
print("**TRAINING STARTING...**")
self.train(data, extras, models, optimizers, schedulers)
if single_gpu is False:
barrier()
destroy_process_group()
if self.is_main_node:
print()
print("------------------------------------")
print()
print("**TRAINING COMPLETE**")
if self.config.wandb_project is not None:
wandb.alert(title=f"Training {self.info.wandb_run_id} finished", text=f"Training {self.info.wandb_run_id} finished")
def train(self, data: WarpCore.Data, extras: WarpCore.Extras, models: Models, optimizers: TrainingCore.Optimizers,
schedulers: WarpCore.Schedulers):
start_iter = self.info.iter + 1
max_iters = self.config.updates * self.config.grad_accum_steps
if self.is_main_node:
print(f"STARTING AT STEP: {start_iter}/{max_iters}")
if self.is_main_node:
create_folder_if_necessary(f'{self.config.output_path}/{self.config.experiment_id}/')
if 'generator' in self.models_to_save():
models.generator.train()
iter_cnt = 0
epoch_cnt = 0
models.train_norm.train()
while True:
epoch_cnt += 1
if self.world_size > 1:
data.sampler.set_epoch(epoch_cnt)
for ggg in range(len(data.dataloader)):
iter_cnt += 1
# FORWARD PASS
loss, loss_adjusted = self.forward_pass(next(data.iterator), extras, models)
# # BACKWARD PASS
grad_norm = self.backward_pass(
iter_cnt % self.config.grad_accum_steps == 0 or iter_cnt == max_iters, loss_adjusted,
models, optimizers, schedulers
)
self.info.iter = iter_cnt
self.info.ema_loss = loss.mean().item() if self.info.ema_loss is None else self.info.ema_loss * 0.99 + loss.mean().item() * 0.01
if self.is_main_node and np.isnan(loss.mean().item()) or np.isnan(grad_norm.item()):
print(f"gggg NaN value encountered in training run {self.info.wandb_run_id}", \
f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}")
if self.is_main_node:
logs = {
'loss': self.info.ema_loss,
'backward_loss': loss_adjusted.mean().item(),
'ema_loss': self.info.ema_loss,
'raw_ori_loss': loss.mean().item(),
'grad_norm': grad_norm.item(),
'lr': optimizers.generator.param_groups[0]['lr'] if optimizers.generator is not None else 0,
'total_steps': self.info.total_steps,
}
print(iter_cnt, max_iters, logs, epoch_cnt, )
if iter_cnt == 1 or iter_cnt % (self.config.save_every ) == 0 or iter_cnt == max_iters:
if np.isnan(loss.mean().item()):
if self.is_main_node and self.config.wandb_project is not None:
print(f"NaN value encountered in training run {self.info.wandb_run_id}", \
f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}")
else:
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
self.info.adaptive_loss = {
'bucket_ranges': extras.gdf.loss_weight.bucket_ranges.tolist(),
'bucket_losses': extras.gdf.loss_weight.bucket_losses.tolist(),
}
if self.is_main_node and iter_cnt % (self.config.save_every * self.config.grad_accum_steps) == 0:
print('save model', iter_cnt, iter_cnt % (self.config.save_every * self.config.grad_accum_steps), self.config.save_every, self.config.grad_accum_steps )
torch.save(models.train_lora.state_dict(), \
f'{self.config.output_path}/{self.config.experiment_id}/train_lora.safetensors')
torch.save(models.train_lora.state_dict(), \
f'{self.config.output_path}/{self.config.experiment_id}/train_lora_{iter_cnt}.safetensors')
if iter_cnt == 1 or iter_cnt % (self.config.save_every* self.config.grad_accum_steps) == 0 or iter_cnt == max_iters:
if self.is_main_node:
self.sample(models, data, extras)
if False:
param_changes = {name: (param - initial_params[name]).norm().item() for name, param in models.train_norm.named_parameters()}
threshold = sorted(param_changes.values(), reverse=True)[int(len(param_changes) * 0.1)] # top 10%
important_params = [name for name, change in param_changes.items() if change > threshold]
print(important_params, threshold, len(param_changes), self.process_id)
json.dump(important_params, open(f'{self.config.output_path}/{self.config.experiment_id}/param.json', 'w'), indent=4)
if self.info.iter >= max_iters:
break
def sample(self, models: Models, data: WarpCore.Data, extras: Extras):
models.generator.eval()
models.train_norm.eval()
with torch.no_grad():
batch = next(data.iterator)
ratio = batch['images'].shape[-2] / batch['images'].shape[-1]
shape_lr = self.get_target_lr_size(ratio)
conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
latents = self.encode_latents(batch, models, extras)
latents_lr = self.encode_latents(batch, models, extras, target_size = shape_lr)
if self.is_main_node:
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
*_, (sampled, _, _, sampled_lr) = extras.gdf.sample(
models.generator, conditions,
latents.shape, latents_lr.shape,
unconditions, device=self.device, **extras.sampling_configs
)
sampled_ema = sampled
sampled_ema_lr = sampled_lr
if self.is_main_node:
print('sampling results hr latent shape ', latents.shape, 'lr latent shape', latents_lr.shape, )
noised_images = torch.cat(
[self.decode_latents(latents[i:i + 1].float(), batch, models, extras) for i in range(len(latents))], dim=0)
sampled_images = torch.cat(
[self.decode_latents(sampled[i:i + 1].float(), batch, models, extras) for i in range(len(sampled))], dim=0)
sampled_images_ema = torch.cat(
[self.decode_latents(sampled_ema[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_ema))],
dim=0)
noised_images_lr = torch.cat(
[self.decode_latents(latents_lr[i:i + 1].float(), batch, models, extras) for i in range(len(latents_lr))], dim=0)
sampled_images_lr = torch.cat(
[self.decode_latents(sampled_lr[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_lr))], dim=0)
sampled_images_ema_lr = torch.cat(
[self.decode_latents(sampled_ema_lr[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_ema_lr))],
dim=0)
images = batch['images']
if images.size(-1) != noised_images.size(-1) or images.size(-2) != noised_images.size(-2):
images = nn.functional.interpolate(images, size=noised_images.shape[-2:], mode='bicubic')
images_lr = nn.functional.interpolate(images, size=noised_images_lr.shape[-2:], mode='bicubic')
collage_img = torch.cat([
torch.cat([i for i in images.cpu()], dim=-1),
torch.cat([i for i in noised_images.cpu()], dim=-1),
torch.cat([i for i in sampled_images.cpu()], dim=-1),
torch.cat([i for i in sampled_images_ema.cpu()], dim=-1),
], dim=-2)
collage_img_lr = torch.cat([
torch.cat([i for i in images_lr.cpu()], dim=-1),
torch.cat([i for i in noised_images_lr.cpu()], dim=-1),
torch.cat([i for i in sampled_images_lr.cpu()], dim=-1),
torch.cat([i for i in sampled_images_ema_lr.cpu()], dim=-1),
], dim=-2)
torchvision.utils.save_image(collage_img, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}.jpg')
torchvision.utils.save_image(collage_img_lr, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}_lr.jpg')
captions = batch['captions']
if self.config.wandb_project is not None:
log_data = [
[captions[i]] + [wandb.Image(sampled_images[i])] + [wandb.Image(sampled_images_ema[i])] + [
wandb.Image(images[i])] for i in range(len(images))]
log_table = wandb.Table(data=log_data, columns=["Captions", "Sampled", "Sampled EMA", "Orig"])
wandb.log({"Log": log_table})
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
plt.plot(extras.gdf.loss_weight.bucket_ranges, extras.gdf.loss_weight.bucket_losses[:-1])
plt.ylabel('Raw Loss')
plt.ylabel('LogSNR')
wandb.log({"Loss/LogSRN": plt})
models.generator.train()
models.train_norm.train()
print('finish sampling')
def sample_fortest(self, models: Models, extras: Extras, hr_shape, lr_shape, batch, eval_image_embeds=False):
models.generator.eval()
models.trans_inr.eval()
with torch.no_grad():
if self.is_main_node:
conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=eval_image_embeds)
unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
*_, (sampled, _, _, sampled_lr) = extras.gdf.sample(
models.generator, conditions,
hr_shape, lr_shape,
unconditions, device=self.device, **extras.sampling_configs
)
if models.generator_ema is not None:
*_, (sampled_ema, _, _, sampled_ema_lr) = extras.gdf.sample(
models.generator_ema, conditions,
latents.shape, latents_lr.shape,
unconditions, device=self.device, **extras.sampling_configs
)
else:
sampled_ema = sampled
sampled_ema_lr = sampled_lr
return sampled, sampled_lr
def main_worker(rank, cfg):
print("Launching Script in main worker")
warpcore = WurstCore(
config_file_path=cfg, rank=rank, world_size = get_world_size()
)
# core.fsdp_defaults['sharding_strategy'] = ShardingStrategy.NO_SHARD
# RUN TRAINING
warpcore(get_world_size()==1)
if __name__ == '__main__':
if get_master_ip() == "127.0.0.1":
mp.spawn(main_worker, nprocs=get_world_size(), args=(sys.argv[1] if len(sys.argv) > 1 else None, ))
else:
main_worker(0, sys.argv[1] if len(sys.argv) > 1 else None, )
|