File size: 5,364 Bytes
7c0f531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#import spaces
import json
import subprocess
import os
import sys

def run_command(command):
    process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
    output, error = process.communicate()
    if process.returncode != 0:
        print(f"Error executing command: {command}")
        print(error.decode('utf-8'))
        exit(1)
    return output.decode('utf-8')

def install_packages():
    # Clone the repository with submodules
    run_command("git clone --recurse-submodules https://github.com/abetlen/llama-cpp-python.git")
    
    # Change to the cloned directory
    os.chdir("llama-cpp-python")
    
    # Checkout the specific commit in the llama.cpp submodule
    os.chdir("vendor/llama.cpp")
    run_command("git checkout 50e0535")
    os.chdir("../..")
    
    # Upgrade pip
    run_command("pip install --upgrade pip")
    
    # Install all optional dependencies
    run_command("pip install -e .[all]")
    
    # Clear the local build cache
    run_command("make clean")
    
    # Reinstall the package
    run_command("pip install -e .")

    # Install llama-cpp-agent
    run_command("pip install llama-cpp-agent")
    
    print("Installation complete!")

try:
    install_packages()
    
    # If installation is successful, import the libraries
    from llama_cpp import Llama
    from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
    from llama_cpp_agent.providers import LlamaCppPythonProvider
    from llama_cpp_agent.chat_history import BasicChatHistory
    from llama_cpp_agent.chat_history.messages import Roles
    
    print("Libraries imported successfully!")
except Exception as e:
    print(f"Installation failed or libraries couldn't be imported: {str(e)}")
    sys.exit(1)
    
import gradio as gr
from huggingface_hub import hf_hub_download

hf_hub_download(
    repo_id="MaziyarPanahi/Mistral-Nemo-Instruct-2407-GGUF",
    filename="Mistral-Nemo-Instruct-2407.Q5_K_M.gguf",
    local_dir="./models"
)

llm = None
llm_model = None

#@spaces.GPU(duration=120)
def respond(
    message,
    history: list[tuple[str, str]],
    model,
    system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
):

    
    chat_template = MessagesFormatterType.MISTRAL

    global llm
    global llm_model
    
    if llm is None or llm_model != model:
        llm = Llama(
            model_path=f"models/{model}",
            flash_attn=True,
            n_gpu_layers=81,
            n_batch=1024,
            n_ctx=32768,
        )
        llm_model = model

    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )
    
    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    for msn in history:
        user = {
            'role': Roles.user,
            'content': msn[0]
        }
        assistant = {
            'role': Roles.assistant,
            'content': msn[1]
        }
        messages.add_message(user)
        messages.add_message(assistant)
    
    stream = agent.get_chat_response(
        message,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False
    )
    
    outputs = ""
    for output in stream:
        outputs += output
        yield outputs

description = """<p><center>
<a href="https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407" target="_blank">[Instruct Model]</a>
<a href="https://huggingface.co/mistralai/Mistral-Nemo-Base-2407" target="_blank">[Base Model]</a>
<a href="https://huggingface.co/second-state/Mistral-Nemo-Instruct-2407-GGUF" target="_blank">[GGUF Version]</a>
</center></p>
"""

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Dropdown([
                'Mistral-Nemo-Instruct-2407.Q5_K_M.gguf'
            ],
            value="Mistral-Nemo-Instruct-2407.Q5_K_M.gguf",
            label="Model"
        ),
        gr.Textbox(value="You are a helpful assistant.", label="System message"),
        gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=0,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition penalty",
        ),
    ],
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
    submit_btn="Send",
    title="Chat with Mistral-NeMo using llama.cpp", 
    description=description,
    chatbot=gr.Chatbot(
        scale=1, 
        likeable=False,
        show_copy_button=True
    )
)

if __name__ == "__main__":
    demo.launch(debug=True)