File size: 7,313 Bytes
2f4febc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import yaml
import torch
import torchvision
from tqdm import tqdm
import sys
sys.path.append(os.path.abspath('./'))

from inference.utils import *
from core.utils import load_or_fail
from train import WurstCore_control_lrguide, WurstCoreB
from PIL import Image
from core.utils import load_or_fail
import math
import argparse
import time
import random
import numpy as np
def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument( '--height', type=int, default=3840, help='image height')
    parser.add_argument('--width', type=int, default=2160, help='image width')
    parser.add_argument('--control_weight', type=float, default=0.70, help='[ 0.3, 0.8]')
    parser.add_argument('--dtype', type=str, default='bf16', help=' if bf16 does not work, change it to float32 ')
    parser.add_argument('--seed', type=int, default=123, help='random seed')
    parser.add_argument('--config_c', type=str, 
    default='configs/training/cfg_control_lr.yaml' ,help='config file for stage c, latent generation')
    parser.add_argument('--config_b', type=str, 
    default='configs/inference/stage_b_1b.yaml' ,help='config file for stage b, latent decoding')
    parser.add_argument( '--prompt', type=str,
     default='A peaceful lake surrounded by mountain,  white cloud in the sky, high quality,', help='text prompt')
    parser.add_argument( '--num_image', type=int, default=4, help='how many images generated')
    parser.add_argument( '--output_dir', type=str, default='figures/controlnet_results/', help='output directory for generated image')
    parser.add_argument( '--stage_a_tiled', action='store_true', help='whther or nor to use tiled decoding for stage a to save memory')
    parser.add_argument( '--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors',  help='pretrained path of newly added paramter of UltraPixel')
    parser.add_argument( '--canny_source_url', type=str, default="figures/California_000490.jpg", help='image used to extract canny edge map')
    
    args = parser.parse_args()
    return args


if __name__ == "__main__":
   
    args = parse_args()
    width = args.width
    height = args.height
    torch.manual_seed(args.seed)
    random.seed(args.seed)
    np.random.seed(args.seed)
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
    
    
    # SETUP STAGE C
    with open(args.config_c, "r", encoding="utf-8") as file:
        loaded_config = yaml.safe_load(file)
    core = WurstCore_control_lrguide(config_dict=loaded_config, device=device, training=False)
    
    # SETUP STAGE B
    with open(args.config_b, "r", encoding="utf-8") as file:
        config_file_b = yaml.safe_load(file)
        
    core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
    
    extras = core.setup_extras_pre()
    models = core.setup_models(extras)
    models.generator.eval().requires_grad_(False)
    print("CONTROLNET READY")
    
    extras_b = core_b.setup_extras_pre()
    models_b = core_b.setup_models(extras_b, skip_clip=True)
    models_b = WurstCoreB.Models(
       **{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
    )
    models_b.generator.eval().requires_grad_(False)
    print("STAGE B READY")
    
    batch_size = 1
    save_dir = args.output_dir
    url = args.canny_source_url
    images = resize_image(Image.open(url).convert("RGB")).unsqueeze(0).expand(batch_size, -1, -1, -1)
    batch = {'images': images}
    
    
    
    
    

    cnet_multiplier = args.control_weight # 0.8 0.6 0.3  control strength
    caption_list = [args.prompt] * args.num_image
    height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
    stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
    stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
    
    
    

    if not os.path.exists(save_dir):
      os.makedirs(save_dir)
    
    
    sdd = torch.load(args.pretrained_path, map_location='cpu')
    collect_sd = {}
    for k, v in sdd.items():
       collect_sd[k[7:]] = v
    models.train_norm.load_state_dict(collect_sd, strict=True)
    
    
    
    
    models.controlnet.load_state_dict(load_or_fail(core.config.controlnet_checkpoint_path), strict=True)
    # Stage C Parameters
    extras.sampling_configs['cfg'] = 1
    extras.sampling_configs['shift'] = 2
    extras.sampling_configs['timesteps'] = 20
    extras.sampling_configs['t_start'] = 1.0
    
    # Stage B Parameters
    extras_b.sampling_configs['cfg'] = 1.1
    extras_b.sampling_configs['shift'] = 1
    extras_b.sampling_configs['timesteps'] = 10
    extras_b.sampling_configs['t_start'] = 1.0
    
    # PREPARE CONDITIONS
    
    
    
    
    for out_cnt, caption in enumerate(caption_list):
        with torch.no_grad():
            
                batch['captions'] = [caption + ' high quality'] * batch_size
                conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
                unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)    
    
                cnet, cnet_input = core.get_cnet(batch, models, extras)
                cnet_uncond = cnet
                conditions['cnet'] = [c.clone() * cnet_multiplier if c is not None else c for c in cnet]
                unconditions['cnet'] = [c.clone() * cnet_multiplier if c is not None else c for c in cnet_uncond]
                edge_images = show_images(cnet_input)
                models.generator.cuda()
                for idx, img in enumerate(edge_images):
                    img.save(os.path.join(save_dir, f"edge_{url.split('/')[-1]}"))
               
                
                print('STAGE C GENERATION***************************')
                with torch.cuda.amp.autocast(dtype=dtype):
                    sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device, conditions, unconditions)
                models.generator.cpu()
                torch.cuda.empty_cache()
                
                conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
                unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
                  
                conditions_b['effnet'] = sampled_c
                unconditions_b['effnet'] = torch.zeros_like(sampled_c)
                print('STAGE B + A DECODING***************************')    
                with torch.cuda.amp.autocast(dtype=dtype):
                    sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
                
                torch.cuda.empty_cache()
                imgs = show_images(sampled)
               
                for idx, img in enumerate(imgs):
                    img.save(os.path.join(save_dir, args.prompt[:20]+'_' + str(out_cnt).zfill(5) + '.jpg'))
        print('finished! Results at ', save_dir )