File size: 12,255 Bytes
2f4febc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import math
import numpy as np
import torch
from torch import nn
from .common import AttnBlock, LayerNorm2d, ResBlock, FeedForwardBlock, TimestepBlock


class StageB(nn.Module):
    def __init__(self, c_in=4, c_out=4, c_r=64, patch_size=2, c_cond=1280, c_hidden=[320, 640, 1280, 1280],
                 nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]],
                 block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]], level_config=['CT', 'CT', 'CTA', 'CTA'], c_clip=1280,
                 c_clip_seq=4, c_effnet=16, c_pixels=3, kernel_size=3, dropout=[0, 0, 0.1, 0.1], self_attn=True,
                 t_conds=['sca']):
        super().__init__()
        self.c_r = c_r
        self.t_conds = t_conds
        self.c_clip_seq = c_clip_seq
        if not isinstance(dropout, list):
            dropout = [dropout] * len(c_hidden)
        if not isinstance(self_attn, list):
            self_attn = [self_attn] * len(c_hidden)

        # CONDITIONING
        self.effnet_mapper = nn.Sequential(
            nn.Conv2d(c_effnet, c_hidden[0] * 4, kernel_size=1),
            nn.GELU(),
            nn.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1),
            LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6)
        )
        self.pixels_mapper = nn.Sequential(
            nn.Conv2d(c_pixels, c_hidden[0] * 4, kernel_size=1),
            nn.GELU(),
            nn.Conv2d(c_hidden[0] * 4, c_hidden[0], kernel_size=1),
            LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6)
        )
        self.clip_mapper = nn.Linear(c_clip, c_cond * c_clip_seq)
        self.clip_norm = nn.LayerNorm(c_cond, elementwise_affine=False, eps=1e-6)

        self.embedding = nn.Sequential(
            nn.PixelUnshuffle(patch_size),
            nn.Conv2d(c_in * (patch_size ** 2), c_hidden[0], kernel_size=1),
            LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6)
        )

        def get_block(block_type, c_hidden, nhead, c_skip=0, dropout=0, self_attn=True):
            if block_type == 'C':
                return ResBlock(c_hidden, c_skip, kernel_size=kernel_size, dropout=dropout)
            elif block_type == 'A':
                return AttnBlock(c_hidden, c_cond, nhead, self_attn=self_attn, dropout=dropout)
            elif block_type == 'F':
                return FeedForwardBlock(c_hidden, dropout=dropout)
            elif block_type == 'T':
                return TimestepBlock(c_hidden, c_r, conds=t_conds)
            else:
                raise Exception(f'Block type {block_type} not supported')

        # BLOCKS
        # -- down blocks
        self.down_blocks = nn.ModuleList()
        self.down_downscalers = nn.ModuleList()
        self.down_repeat_mappers = nn.ModuleList()
        for i in range(len(c_hidden)):
            if i > 0:
                self.down_downscalers.append(nn.Sequential(
                    LayerNorm2d(c_hidden[i - 1], elementwise_affine=False, eps=1e-6),
                    nn.Conv2d(c_hidden[i - 1], c_hidden[i], kernel_size=2, stride=2),
                ))
            else:
                self.down_downscalers.append(nn.Identity())
            down_block = nn.ModuleList()
            for _ in range(blocks[0][i]):
                for block_type in level_config[i]:
                    block = get_block(block_type, c_hidden[i], nhead[i], dropout=dropout[i], self_attn=self_attn[i])
                    down_block.append(block)
            self.down_blocks.append(down_block)
            if block_repeat is not None:
                block_repeat_mappers = nn.ModuleList()
                for _ in range(block_repeat[0][i] - 1):
                    block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1))
                self.down_repeat_mappers.append(block_repeat_mappers)

        # -- up blocks
        self.up_blocks = nn.ModuleList()
        self.up_upscalers = nn.ModuleList()
        self.up_repeat_mappers = nn.ModuleList()
        for i in reversed(range(len(c_hidden))):
            if i > 0:
                self.up_upscalers.append(nn.Sequential(
                    LayerNorm2d(c_hidden[i], elementwise_affine=False, eps=1e-6),
                    nn.ConvTranspose2d(c_hidden[i], c_hidden[i - 1], kernel_size=2, stride=2),
                ))
            else:
                self.up_upscalers.append(nn.Identity())
            up_block = nn.ModuleList()
            for j in range(blocks[1][::-1][i]):
                for k, block_type in enumerate(level_config[i]):
                    c_skip = c_hidden[i] if i < len(c_hidden) - 1 and j == k == 0 else 0
                    block = get_block(block_type, c_hidden[i], nhead[i], c_skip=c_skip, dropout=dropout[i],
                                      self_attn=self_attn[i])
                    up_block.append(block)
            self.up_blocks.append(up_block)
            if block_repeat is not None:
                block_repeat_mappers = nn.ModuleList()
                for _ in range(block_repeat[1][::-1][i] - 1):
                    block_repeat_mappers.append(nn.Conv2d(c_hidden[i], c_hidden[i], kernel_size=1))
                self.up_repeat_mappers.append(block_repeat_mappers)

        # OUTPUT
        self.clf = nn.Sequential(
            LayerNorm2d(c_hidden[0], elementwise_affine=False, eps=1e-6),
            nn.Conv2d(c_hidden[0], c_out * (patch_size ** 2), kernel_size=1),
            nn.PixelShuffle(patch_size),
        )

        # --- WEIGHT INIT ---
        self.apply(self._init_weights)  # General init
        nn.init.normal_(self.clip_mapper.weight, std=0.02)  # conditionings
        nn.init.normal_(self.effnet_mapper[0].weight, std=0.02)  # conditionings
        nn.init.normal_(self.effnet_mapper[2].weight, std=0.02)  # conditionings
        nn.init.normal_(self.pixels_mapper[0].weight, std=0.02)  # conditionings
        nn.init.normal_(self.pixels_mapper[2].weight, std=0.02)  # conditionings
        torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02)  # inputs
        nn.init.constant_(self.clf[1].weight, 0)  # outputs

        # blocks
        for level_block in self.down_blocks + self.up_blocks:
            for block in level_block:
                if isinstance(block, ResBlock) or isinstance(block, FeedForwardBlock):
                    block.channelwise[-1].weight.data *= np.sqrt(1 / sum(blocks[0]))
                elif isinstance(block, TimestepBlock):
                    for layer in block.modules():
                        if isinstance(layer, nn.Linear):
                            nn.init.constant_(layer.weight, 0)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            torch.nn.init.xavier_uniform_(m.weight)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)

    def gen_r_embedding(self, r, max_positions=10000):
        r = r * max_positions
        half_dim = self.c_r // 2
        emb = math.log(max_positions) / (half_dim - 1)
        emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
        emb = r[:, None] * emb[None, :]
        emb = torch.cat([emb.sin(), emb.cos()], dim=1)
        if self.c_r % 2 == 1:  # zero pad
            emb = nn.functional.pad(emb, (0, 1), mode='constant')
        return emb

    def gen_c_embeddings(self, clip):
        if len(clip.shape) == 2:
            clip = clip.unsqueeze(1)
        clip = self.clip_mapper(clip).view(clip.size(0), clip.size(1) * self.c_clip_seq, -1)
        clip = self.clip_norm(clip)
        return clip

    def _down_encode(self, x, r_embed, clip):
        level_outputs = []
        block_group = zip(self.down_blocks, self.down_downscalers, self.down_repeat_mappers)
        for down_block, downscaler, repmap in block_group:
            x = downscaler(x)
            for i in range(len(repmap) + 1):
                for block in down_block:
                    if isinstance(block, ResBlock) or (
                            hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
                                                                                  ResBlock)):
                        x = block(x)
                    elif isinstance(block, AttnBlock) or (
                            hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
                                                                                  AttnBlock)):
                        x = block(x, clip)
                    elif isinstance(block, TimestepBlock) or (
                            hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
                                                                                  TimestepBlock)):
                        x = block(x, r_embed)
                    else:
                        x = block(x)
                if i < len(repmap):
                    x = repmap[i](x)
            level_outputs.insert(0, x)
        return level_outputs

    def _up_decode(self, level_outputs, r_embed, clip):
        x = level_outputs[0]
        block_group = zip(self.up_blocks, self.up_upscalers, self.up_repeat_mappers)
        for i, (up_block, upscaler, repmap) in enumerate(block_group):
            for j in range(len(repmap) + 1):
                for k, block in enumerate(up_block):
                    if isinstance(block, ResBlock) or (
                            hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
                                                                                  ResBlock)):
                        skip = level_outputs[i] if k == 0 and i > 0 else None
                        if skip is not None and (x.size(-1) != skip.size(-1) or x.size(-2) != skip.size(-2)):
                            x = torch.nn.functional.interpolate(x.float(), skip.shape[-2:], mode='bilinear',
                                                                align_corners=True)
                        x = block(x, skip)
                    elif isinstance(block, AttnBlock) or (
                            hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
                                                                                  AttnBlock)):
                        x = block(x, clip)
                    elif isinstance(block, TimestepBlock) or (
                            hasattr(block, '_fsdp_wrapped_module') and isinstance(block._fsdp_wrapped_module,
                                                                                  TimestepBlock)):
                        x = block(x, r_embed)
                    else:
                        x = block(x)
                if j < len(repmap):
                    x = repmap[j](x)
            x = upscaler(x)
        return x

    def forward(self, x, r, effnet, clip, pixels=None, **kwargs):
        if pixels is None:
            pixels = x.new_zeros(x.size(0), 3, 8, 8)

        # Process the conditioning embeddings
        r_embed = self.gen_r_embedding(r)
        for c in self.t_conds:
            t_cond = kwargs.get(c, torch.zeros_like(r))
            r_embed = torch.cat([r_embed, self.gen_r_embedding(t_cond)], dim=1)
        clip = self.gen_c_embeddings(clip)

        # Model Blocks
        x = self.embedding(x)
        x = x + self.effnet_mapper(
            nn.functional.interpolate(effnet.float(), size=x.shape[-2:], mode='bilinear', align_corners=True))
        x = x + nn.functional.interpolate(self.pixels_mapper(pixels).float(), size=x.shape[-2:], mode='bilinear',
                                          align_corners=True)
        level_outputs = self._down_encode(x, r_embed, clip)
        x = self._up_decode(level_outputs, r_embed, clip)
        return self.clf(x)

    def update_weights_ema(self, src_model, beta=0.999):
        for self_params, src_params in zip(self.parameters(), src_model.parameters()):
            self_params.data = self_params.data * beta + src_params.data.clone().to(self_params.device) * (1 - beta)
        for self_buffers, src_buffers in zip(self.buffers(), src_model.buffers()):
            self_buffers.data = self_buffers.data * beta + src_buffers.data.clone().to(self_buffers.device) * (1 - beta)