Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,277 Bytes
2f4febc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import torchvision
import torch
from torch import nn
import numpy as np
import kornia
import cv2
from core.utils import load_or_fail
#from insightface.app.common import Face
from .effnet import EfficientNetEncoder
from .cnet_modules.pidinet import PidiNetDetector
from .cnet_modules.inpainting.saliency_model import MicroResNet
#from .cnet_modules.face_id.arcface import FaceDetector, ArcFaceRecognizer
from .common import LayerNorm2d
class CNetResBlock(nn.Module):
def __init__(self, c):
super().__init__()
self.blocks = nn.Sequential(
LayerNorm2d(c),
nn.GELU(),
nn.Conv2d(c, c, kernel_size=3, padding=1),
LayerNorm2d(c),
nn.GELU(),
nn.Conv2d(c, c, kernel_size=3, padding=1),
)
def forward(self, x):
return x + self.blocks(x)
class ControlNet(nn.Module):
def __init__(self, c_in=3, c_proj=2048, proj_blocks=None, bottleneck_mode=None):
super().__init__()
if bottleneck_mode is None:
bottleneck_mode = 'effnet'
self.proj_blocks = proj_blocks
if bottleneck_mode == 'effnet':
embd_channels = 1280
#self.backbone = torchvision.models.efficientnet_v2_s(weights='DEFAULT').features.eval()
self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
if c_in != 3:
in_weights = self.backbone[0][0].weight.data
self.backbone[0][0] = nn.Conv2d(c_in, 24, kernel_size=3, stride=2, bias=False)
if c_in > 3:
nn.init.constant_(self.backbone[0][0].weight, 0)
self.backbone[0][0].weight.data[:, :3] = in_weights[:, :3].clone()
else:
self.backbone[0][0].weight.data = in_weights[:, :c_in].clone()
elif bottleneck_mode == 'simple':
embd_channels = c_in
self.backbone = nn.Sequential(
nn.Conv2d(embd_channels, embd_channels * 4, kernel_size=3, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(embd_channels * 4, embd_channels, kernel_size=3, padding=1),
)
elif bottleneck_mode == 'large':
self.backbone = nn.Sequential(
nn.Conv2d(c_in, 4096 * 4, kernel_size=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(4096 * 4, 1024, kernel_size=1),
*[CNetResBlock(1024) for _ in range(8)],
nn.Conv2d(1024, 1280, kernel_size=1),
)
embd_channels = 1280
else:
raise ValueError(f'Unknown bottleneck mode: {bottleneck_mode}')
self.projections = nn.ModuleList()
for _ in range(len(proj_blocks)):
self.projections.append(nn.Sequential(
nn.Conv2d(embd_channels, embd_channels, kernel_size=1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(embd_channels, c_proj, kernel_size=1, bias=False),
))
nn.init.constant_(self.projections[-1][-1].weight, 0) # zero output projection
def forward(self, x):
x = self.backbone(x)
proj_outputs = [None for _ in range(max(self.proj_blocks) + 1)]
for i, idx in enumerate(self.proj_blocks):
proj_outputs[idx] = self.projections[i](x)
return proj_outputs
class ControlNetDeliverer():
def __init__(self, controlnet_projections):
self.controlnet_projections = controlnet_projections
self.restart()
def restart(self):
self.idx = 0
return self
def __call__(self):
if self.idx < len(self.controlnet_projections):
output = self.controlnet_projections[self.idx]
else:
output = None
self.idx += 1
return output
# CONTROLNET FILTERS ----------------------------------------------------
class BaseFilter():
def __init__(self, device):
self.device = device
def num_channels(self):
return 3
def __call__(self, x):
return x
class CannyFilter(BaseFilter):
def __init__(self, device, resize=224):
super().__init__(device)
self.resize = resize
def num_channels(self):
return 1
def __call__(self, x):
orig_size = x.shape[-2:]
if self.resize is not None:
x = nn.functional.interpolate(x, size=(self.resize, self.resize), mode='bilinear')
edges = [cv2.Canny(x[i].mul(255).permute(1, 2, 0).cpu().numpy().astype(np.uint8), 100, 200) for i in range(len(x))]
edges = torch.stack([torch.tensor(e).div(255).unsqueeze(0) for e in edges], dim=0)
if self.resize is not None:
edges = nn.functional.interpolate(edges, size=orig_size, mode='bilinear')
return edges
class QRFilter(BaseFilter):
def __init__(self, device, resize=224, blobify=True, dilation_kernels=[3, 5, 7], blur_kernels=[15]):
super().__init__(device)
self.resize = resize
self.blobify = blobify
self.dilation_kernels = dilation_kernels
self.blur_kernels = blur_kernels
def num_channels(self):
return 1
def __call__(self, x):
x = x.to(self.device)
orig_size = x.shape[-2:]
if self.resize is not None:
x = nn.functional.interpolate(x, size=(self.resize, self.resize), mode='bilinear')
x = kornia.color.rgb_to_hsv(x)[:, -1:]
# blobify
if self.blobify:
d_kernel = np.random.choice(self.dilation_kernels)
d_blur = np.random.choice(self.blur_kernels)
if d_blur > 0:
x = torchvision.transforms.GaussianBlur(d_blur)(x)
if d_kernel > 0:
blob_mask = ((torch.linspace(-0.5, 0.5, d_kernel).pow(2)[None] + torch.linspace(-0.5, 0.5,
d_kernel).pow(2)[:,
None]) < 0.3).float().to(self.device)
x = kornia.morphology.dilation(x, blob_mask)
x = kornia.morphology.erosion(x, blob_mask)
# mask
vmax, vmin = x.amax(dim=[2, 3], keepdim=True)[0], x.amin(dim=[2, 3], keepdim=True)[0]
th = (vmax - vmin) * 0.33
high_brightness, low_brightness = (x > (vmax - th)).float(), (x < (vmin + th)).float()
mask = (torch.ones_like(x) - low_brightness + high_brightness) * 0.5
if self.resize is not None:
mask = nn.functional.interpolate(mask, size=orig_size, mode='bilinear')
return mask.cpu()
class PidiFilter(BaseFilter):
def __init__(self, device, resize=224, dilation_kernels=[0, 3, 5, 7, 9], binarize=True):
super().__init__(device)
self.resize = resize
self.model = PidiNetDetector(device)
self.dilation_kernels = dilation_kernels
self.binarize = binarize
def num_channels(self):
return 1
def __call__(self, x):
x = x.to(self.device)
orig_size = x.shape[-2:]
if self.resize is not None:
x = nn.functional.interpolate(x, size=(self.resize, self.resize), mode='bilinear')
x = self.model(x)
d_kernel = np.random.choice(self.dilation_kernels)
if d_kernel > 0:
blob_mask = ((torch.linspace(-0.5, 0.5, d_kernel).pow(2)[None] + torch.linspace(-0.5, 0.5, d_kernel).pow(2)[
:, None]) < 0.3).float().to(self.device)
x = kornia.morphology.dilation(x, blob_mask)
if self.binarize:
th = np.random.uniform(0.05, 0.7)
x = (x > th).float()
if self.resize is not None:
x = nn.functional.interpolate(x, size=orig_size, mode='bilinear')
return x.cpu()
class SRFilter(BaseFilter):
def __init__(self, device, scale_factor=1 / 4):
super().__init__(device)
self.scale_factor = scale_factor
def num_channels(self):
return 3
def __call__(self, x):
x = torch.nn.functional.interpolate(x.clone(), scale_factor=self.scale_factor, mode="nearest")
return torch.nn.functional.interpolate(x, scale_factor=1 / self.scale_factor, mode="nearest")
class SREffnetFilter(BaseFilter):
def __init__(self, device, scale_factor=1/2):
super().__init__(device)
self.scale_factor = scale_factor
self.effnet_preprocess = torchvision.transforms.Compose([
torchvision.transforms.Normalize(
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
)
])
self.effnet = EfficientNetEncoder().to(self.device)
effnet_checkpoint = load_or_fail("models/effnet_encoder.safetensors")
self.effnet.load_state_dict(effnet_checkpoint)
self.effnet.eval().requires_grad_(False)
def num_channels(self):
return 16
def __call__(self, x):
x = torch.nn.functional.interpolate(x.clone(), scale_factor=self.scale_factor, mode="nearest")
with torch.no_grad():
effnet_embedding = self.effnet(self.effnet_preprocess(x.to(self.device))).cpu()
effnet_embedding = torch.nn.functional.interpolate(effnet_embedding, scale_factor=1/self.scale_factor, mode="nearest")
upscaled_image = torch.nn.functional.interpolate(x, scale_factor=1/self.scale_factor, mode="nearest")
return effnet_embedding, upscaled_image
class InpaintFilter(BaseFilter):
def __init__(self, device, thresold=[0.04, 0.4], p_outpaint=0.4):
super().__init__(device)
self.saliency_model = MicroResNet().eval().requires_grad_(False).to(device)
self.saliency_model.load_state_dict(load_or_fail("modules/cnet_modules/inpainting/saliency_model.pt"))
self.thresold = thresold
self.p_outpaint = p_outpaint
def num_channels(self):
return 4
def __call__(self, x, mask=None, threshold=None, outpaint=None):
x = x.to(self.device)
resized_x = torchvision.transforms.functional.resize(x, 240, antialias=True)
if threshold is None:
threshold = np.random.uniform(self.thresold[0], self.thresold[1])
if mask is None:
saliency_map = self.saliency_model(resized_x) > threshold
if outpaint is None:
if np.random.rand() < self.p_outpaint:
saliency_map = ~saliency_map
else:
if outpaint:
saliency_map = ~saliency_map
interpolated_saliency_map = torch.nn.functional.interpolate(saliency_map.float(), size=x.shape[2:], mode="nearest")
saliency_map = torchvision.transforms.functional.gaussian_blur(interpolated_saliency_map, 141) > 0.5
inpainted_images = torch.where(saliency_map, torch.ones_like(x), x)
mask = torch.nn.functional.interpolate(saliency_map.float(), size=inpainted_images.shape[2:], mode="nearest")
else:
mask = mask.to(self.device)
inpainted_images = torch.where(mask, torch.ones_like(x), x)
c_inpaint = torch.cat([inpainted_images, mask], dim=1)
return c_inpaint.cpu()
# IDENTITY
'''
class IdentityFilter(BaseFilter):
def __init__(self, device, max_faces=4, p_drop=0.05, p_full=0.3):
detector_path = 'modules/cnet_modules/face_id/models/buffalo_l/det_10g.onnx'
recognizer_path = 'modules/cnet_modules/face_id/models/buffalo_l/w600k_r50.onnx'
super().__init__(device)
self.max_faces = max_faces
self.p_drop = p_drop
self.p_full = p_full
self.detector = FaceDetector(detector_path, device=device)
self.recognizer = ArcFaceRecognizer(recognizer_path, device=device)
self.id_colors = torch.tensor([
[1.0, 0.0, 0.0], # RED
[0.0, 1.0, 0.0], # GREEN
[0.0, 0.0, 1.0], # BLUE
[1.0, 0.0, 1.0], # PURPLE
[0.0, 1.0, 1.0], # CYAN
[1.0, 1.0, 0.0], # YELLOW
[0.5, 0.0, 0.0], # DARK RED
[0.0, 0.5, 0.0], # DARK GREEN
[0.0, 0.0, 0.5], # DARK BLUE
[0.5, 0.0, 0.5], # DARK PURPLE
[0.0, 0.5, 0.5], # DARK CYAN
[0.5, 0.5, 0.0], # DARK YELLOW
])
def num_channels(self):
return 512
def get_faces(self, image):
npimg = image.permute(1, 2, 0).mul(255).to(device="cpu", dtype=torch.uint8).cpu().numpy()
bgr = cv2.cvtColor(npimg, cv2.COLOR_RGB2BGR)
bboxes, kpss = self.detector.detect(bgr, max_num=self.max_faces)
N = len(bboxes)
ids = torch.zeros((N, 512), dtype=torch.float32)
for i in range(N):
face = Face(bbox=bboxes[i, :4], kps=kpss[i], det_score=bboxes[i, 4])
ids[i, :] = self.recognizer.get(bgr, face)
tbboxes = torch.tensor(bboxes[:, :4], dtype=torch.int)
ids = ids / torch.linalg.norm(ids, dim=1, keepdim=True)
return tbboxes, ids # returns bounding boxes (N x 4) and ID vectors (N x 512)
def __call__(self, x):
visual_aid = x.clone().cpu()
face_mtx = torch.zeros(x.size(0), 512, x.size(-2) // 32, x.size(-1) // 32)
for i in range(x.size(0)):
bounding_boxes, ids = self.get_faces(x[i])
for j in range(bounding_boxes.size(0)):
if np.random.rand() > self.p_drop:
sx, sy, ex, ey = (bounding_boxes[j] / 32).clamp(min=0).round().int().tolist()
ex, ey = max(ex, sx + 1), max(ey, sy + 1)
if bounding_boxes.size(0) == 1 and np.random.rand() < self.p_full:
sx, sy, ex, ey = 0, 0, x.size(-1) // 32, x.size(-2) // 32
face_mtx[i, :, sy:ey, sx:ex] = ids[j:j + 1, :, None, None]
visual_aid[i, :, int(sy * 32):int(ey * 32), int(sx * 32):int(ex * 32)] += self.id_colors[j % 13, :,
None, None]
visual_aid[i, :, int(sy * 32):int(ey * 32), int(sx * 32):int(ex * 32)] *= 0.5
return face_mtx.to(x.device), visual_aid.to(x.device)
'''
|