File size: 34,738 Bytes
2f4febc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
import torch
import json
import yaml
import torchvision
from torch import nn, optim
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
from warmup_scheduler import GradualWarmupScheduler
import torch.multiprocessing as mp
import numpy as np
import os
import sys
sys.path.append(os.path.abspath('./'))
from dataclasses import dataclass
from torch.distributed import init_process_group, destroy_process_group, barrier
from gdf import GDF_dual_fixlrt as GDF
from gdf import EpsilonTarget, CosineSchedule
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
from torchtools.transforms import SmartCrop
from fractions import Fraction
from modules.effnet import EfficientNetEncoder

from modules.model_4stage_lite import StageC, ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock
from modules.previewer import Previewer
from core.data import Bucketeer
from train.base import DataCore, TrainingCore
from tqdm import tqdm
from core import WarpCore
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail

from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from contextlib import contextmanager
from train.dist_core import *
import glob
from torch.utils.data import DataLoader, Dataset
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
from PIL import Image
from core.utils import EXPECTED, EXPECTED_TRAIN, update_weights_ema, create_folder_if_necessary
from core.utils import Base
from modules.common_ckpt import LayerNorm2d, GlobalResponseNorm
import torch.nn.functional as F
import functools
import math
import copy
import random
from modules.lora import apply_lora, apply_retoken, LoRA, ReToken
Image.MAX_IMAGE_PIXELS = None
torch.manual_seed(23)
random.seed(23)
np.random.seed(23)
#7978026

class Null_Model(torch.nn.Module):
    def __init__(self):
        super().__init__()
    def forward(self, x):
        pass




def identity(x):
    if isinstance(x, bytes):
        x = x.decode('utf-8')
    return x
def check_nan_inmodel(model, meta=''):
        for name, param in model.named_parameters():
            if torch.isnan(param).any():
                print(f"nan detected in {name}", meta)
                return True
        print('no nan', meta)
        return False  
class mydist_dataset(Dataset):
    def __init__(self, rootpath, img_processor=None):

        self.img_pathlist = glob.glob(os.path.join(rootpath, '*', '*.jpg'))
        self.img_processor = img_processor
        self.length = len( self.img_pathlist)

      
      
    def __getitem__(self, idx):
        
        imgpath = self.img_pathlist[idx]
        json_file = imgpath.replace('.jpg', '.json') 
       
        with open(json_file, 'r') as file:
            info = json.load(file)
        txt = info['caption']
        if txt is None:
            txt = ' ' 
        try:  
          img = Image.open(imgpath).convert('RGB')
          w, h = img.size
          if self.img_processor is not None:
            img = self.img_processor(img)

        except:
          print('exception', imgpath)
          return self.__getitem__(random.randint(0, self.length -1 ) )
        return dict(captions=txt, images=img)
    def __len__(self):
        return self.length

class WurstCore(TrainingCore, DataCore, WarpCore):
    @dataclass(frozen=True)
    class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config):
        # TRAINING PARAMS
        lr: float = EXPECTED_TRAIN
        warmup_updates: int = EXPECTED_TRAIN
        dtype: str = None

        # MODEL VERSION
        model_version: str = EXPECTED  # 3.6B or 1B
        clip_image_model_name: str = 'openai/clip-vit-large-patch14'
        clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k'
     
        # CHECKPOINT PATHS
        effnet_checkpoint_path: str = EXPECTED
        previewer_checkpoint_path: str = EXPECTED
       
        generator_checkpoint_path: str = None

        # gdf customization
        adaptive_loss_weight: str = None
        use_ddp: bool=EXPECTED
       
       
    @dataclass(frozen=True)
    class Data(Base):
        dataset: Dataset = EXPECTED
        dataloader: DataLoader  = EXPECTED
        iterator: any = EXPECTED
        sampler: DistributedSampler = EXPECTED

    @dataclass(frozen=True)
    class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models):
        effnet: nn.Module = EXPECTED
        previewer: nn.Module = EXPECTED
        train_norm: nn.Module = EXPECTED
       

    @dataclass(frozen=True)
    class Schedulers(WarpCore.Schedulers):
        generator: any = None

    @dataclass(frozen=True)
    class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras):
        gdf: GDF = EXPECTED
        sampling_configs: dict = EXPECTED
        effnet_preprocess: torchvision.transforms.Compose = EXPECTED

    info: TrainingCore.Info
    config: Config

    def setup_extras_pre(self) -> Extras:
        gdf = GDF(
            schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
            input_scaler=VPScaler(), target=EpsilonTarget(),
            noise_cond=CosineTNoiseCond(),
            loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(),
        )
        sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20}

        if self.info.adaptive_loss is not None:
            gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges'])
            gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses'])

        effnet_preprocess = torchvision.transforms.Compose([
            torchvision.transforms.Normalize(
                mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
            )
        ])

        clip_preprocess = torchvision.transforms.Compose([
            torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC),
            torchvision.transforms.CenterCrop(224),
            torchvision.transforms.Normalize(
                mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)
            )
        ])

        if self.config.training:
            transforms = torchvision.transforms.Compose([
                torchvision.transforms.ToTensor(),
                torchvision.transforms.Resize(self.config.image_size[-1], interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True),
                SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2)
            ])
        else:
            transforms = None

        return self.Extras(
            gdf=gdf,
            sampling_configs=sampling_configs,
            transforms=transforms,
            effnet_preprocess=effnet_preprocess,
            clip_preprocess=clip_preprocess
        )

    def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False,
                       eval_image_embeds=False, return_fields=None):
        conditions = super().get_conditions(
            batch, models, extras, is_eval, is_unconditional,
            eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img']
        )
        return conditions

    def setup_models(self, extras: Extras) -> Models:   # configure model

        dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.bfloat16

        # EfficientNet encoderin
        effnet = EfficientNetEncoder()
        effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path)
        effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict'])
        effnet.eval().requires_grad_(False).to(self.device)
        del effnet_checkpoint

        # Previewer
        previewer = Previewer()
        previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path)
        previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict'])
        previewer.eval().requires_grad_(False).to(self.device)
        del previewer_checkpoint

        @contextmanager
        def dummy_context():
            yield None

        loading_context = dummy_context if self.config.training else init_empty_weights

        # Diffusion models
        with loading_context():
            generator_ema = None
            if self.config.model_version == '3.6B':
                generator = StageC()
                if self.config.ema_start_iters is not None:  # default setting
                    generator_ema = StageC()
            elif self.config.model_version == '1B':
                print('in line 155 1b light model', self.config.model_version )
                generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
                
                if self.config.ema_start_iters is not None and self.config.training:
                    generator_ema = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
            else:
                raise ValueError(f"Unknown model version {self.config.model_version}")

        
     
        if loading_context is dummy_context:
            generator.load_state_dict( load_or_fail(self.config.generator_checkpoint_path))
        else:
            for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items():
                    set_module_tensor_to_device(generator, param_name, "cpu", value=param)

        generator._init_extra_parameter()
        generator = generator.to(torch.bfloat16).to(self.device)
       
        
        train_norm = nn.ModuleList()
        cnt_norm = 0
        for mm in generator.modules():
            if isinstance(mm,  GlobalResponseNorm):
               
                train_norm.append(Null_Model())
                cnt_norm += 1
             
        train_norm.append(generator.agg_net)
        train_norm.append(generator.agg_net_up)      
        total = sum([ param.nelement()  for param in train_norm.parameters()])
        print('Trainable parameter', total / 1048576)
        
        if os.path.exists(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors')):
            sdd = torch.load(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors'), map_location='cpu')
            collect_sd = {}
            for k, v in sdd.items():
                collect_sd[k[7:]] = v
            train_norm.load_state_dict(collect_sd, strict=True)
        
       
        train_norm.to(self.device).train().requires_grad_(True)
        train_norm_ema = copy.deepcopy(train_norm)
        train_norm_ema.to(self.device).eval().requires_grad_(False)
        if generator_ema is not None:
            
            generator_ema.load_state_dict(load_or_fail(self.config.generator_checkpoint_path))
            generator_ema._init_extra_parameter()

          
            pretrained_pth = os.path.join(self.config.output_path, self.config.experiment_id, 'generator.safetensors')
            if os.path.exists(pretrained_pth):
              print(pretrained_pth, 'exists')
              generator_ema.load_state_dict(torch.load(pretrained_pth, map_location='cpu'))
          
           
            generator_ema.eval().requires_grad_(False)
      
         
            
        
        check_nan_inmodel(generator, 'generator')
     
        
        
        if self.config.use_ddp and self.config.training:

            train_norm = DDP(train_norm, device_ids=[self.device], find_unused_parameters=True)
            
        # CLIP encoders     
        tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name)
        text_model = CLIPTextModelWithProjection.from_pretrained( self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device)
        image_model = CLIPVisionModelWithProjection.from_pretrained(self.config.clip_image_model_name).requires_grad_(False).to(dtype).to(self.device)
        
        return self.Models(
            effnet=effnet, previewer=previewer, train_norm = train_norm,
            generator=generator, tokenizer=tokenizer, text_model=text_model, image_model=image_model,
        )

    def setup_optimizers(self, extras: Extras, models: Models) -> TrainingCore.Optimizers:
        
 
        params = []
        params += list(models.train_norm.module.parameters())
       
        optimizer = optim.AdamW(params, lr=self.config.lr) 

        return self.Optimizers(generator=optimizer)

    def ema_update(self, ema_model, source_model, beta):
        for param_src, param_ema in zip(source_model.parameters(), ema_model.parameters()):
            param_ema.data.mul_(beta).add_(param_src.data, alpha = 1 - beta)
            
    def sync_ema(self, ema_model):
        for param in ema_model.parameters():
            torch.distributed.all_reduce(param.data, op=torch.distributed.ReduceOp.SUM)
            param.data /= torch.distributed.get_world_size()
    def setup_optimizers_backup(self, extras: Extras, models: Models) -> TrainingCore.Optimizers:
       

        optimizer = optim.AdamW(
            models.generator.up_blocks.parameters() , 
        lr=self.config.lr)
        optimizer = self.load_optimizer(optimizer, 'generator_optim',
                                        fsdp_model=models.generator if self.config.use_fsdp else None)
        return self.Optimizers(generator=optimizer)

    def setup_schedulers(self, extras: Extras, models: Models, optimizers: TrainingCore.Optimizers) -> Schedulers:
        scheduler = GradualWarmupScheduler(optimizers.generator, multiplier=1, total_epoch=self.config.warmup_updates)
        scheduler.last_epoch = self.info.total_steps
        return self.Schedulers(generator=scheduler)

    def setup_data(self, extras: Extras) -> WarpCore.Data:
        # SETUP DATASET
        dataset_path = self.config.webdataset_path
        dataset = mydist_dataset(dataset_path, \
            torchvision.transforms.ToTensor() if self.config.multi_aspect_ratio is not None \
                else extras.transforms)

        # SETUP DATALOADER
        real_batch_size = self.config.batch_size // (self.world_size * self.config.grad_accum_steps)
       
        sampler =  DistributedSampler(dataset, rank=self.process_id, num_replicas = self.world_size, shuffle=True)
        dataloader = DataLoader(
            dataset, batch_size=real_batch_size, num_workers=8, pin_memory=True,
            collate_fn=identity if self.config.multi_aspect_ratio is not None else None,
            sampler = sampler
        )
        if self.is_main_node:
            print(f"Training with batch size {self.config.batch_size} ({real_batch_size}/GPU)")

        if self.config.multi_aspect_ratio is not None:
            aspect_ratios = [float(Fraction(f)) for f in self.config.multi_aspect_ratio]
            dataloader_iterator = Bucketeer(dataloader, density=[ss*ss for ss in self.config.image_size] , factor=32,
                                            ratios=aspect_ratios, p_random_ratio=self.config.bucketeer_random_ratio,
                                            interpolate_nearest=False)  # , use_smartcrop=True)
        else:
           
            dataloader_iterator = iter(dataloader)

        return self.Data(dataset=dataset, dataloader=dataloader, iterator=dataloader_iterator, sampler=sampler)


    def  models_to_save(self):
        pass
    def setup_ddp(self, experiment_id, single_gpu=False, rank=0):

        if not single_gpu:
            local_rank = rank
            process_id = rank
            world_size = get_world_size()

            self.process_id = process_id
            self.is_main_node = process_id == 0
            self.device = torch.device(local_rank)
            self.world_size = world_size
          
            os.environ['MASTER_ADDR'] = 'localhost'
            os.environ['MASTER_PORT'] = '41443'
            torch.cuda.set_device(local_rank)
            init_process_group(
                backend="nccl",
                rank=local_rank,
                world_size=world_size,
            )
            print(f"[GPU {process_id}] READY")
        else:
            self.is_main_node = rank == 0
            self.process_id = rank
            self.device = torch.device('cuda:0')
            self.world_size = 1
            print("Running in single thread, DDP not enabled.")
    # Training loop --------------------------------
    def get_target_lr_size(self, ratio, std_size=24):
        w, h = int(std_size / math.sqrt(ratio)), int(std_size * math.sqrt(ratio)) 
        return (h * 32 , w * 32) 
    def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models):
        #batch = next(data.iterator)
        batch = data
        ratio = batch['images'].shape[-2] / batch['images'].shape[-1]
        shape_lr = self.get_target_lr_size(ratio)
        #print('in line 485', shape_lr, ratio, batch['images'].shape)
        with torch.no_grad():
            conditions = self.get_conditions(batch, models, extras)
            
            latents = self.encode_latents(batch, models, extras)
            latents_lr = self.encode_latents(batch, models, extras,target_size=shape_lr)
            
            noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1)
            noised_lr, noise_lr, target_lr, logSNR_lr, noise_cond_lr, loss_weight_lr = extras.gdf.diffuse(latents_lr, shift=1, loss_shift=1, t=torch.ones(latents.shape[0]).to(latents.device)*0.05, )

        with torch.cuda.amp.autocast(dtype=torch.bfloat16): 
            # 768 1536
            require_cond = True
          
            with torch.no_grad():
                _, lr_enc_guide, lr_dec_guide = models.generator(noised_lr, noise_cond_lr, reuire_f=True, **conditions)
            
            
            pred = models.generator(noised, noise_cond, reuire_f=False, lr_guide=(lr_enc_guide, lr_dec_guide) if require_cond else None , **conditions)             
            loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3]) 
           
            loss_adjusted = (loss * loss_weight ).mean() / self.config.grad_accum_steps 
          

        if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
            extras.gdf.loss_weight.update_buckets(logSNR, loss)

        return loss,  loss_adjusted

    def backward_pass(self, update, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers, schedulers: Schedulers):
       
        
        if update:
          
            torch.distributed.barrier()
            loss_adjusted.backward()
            
            grad_norm = nn.utils.clip_grad_norm_(models.train_norm.module.parameters(), 1.0)
           
            optimizers_dict = optimizers.to_dict()
            for k in optimizers_dict:
                if k != 'training':
                    optimizers_dict[k].step()
            schedulers_dict = schedulers.to_dict()
            for k in schedulers_dict:
                if k != 'training':
                    schedulers_dict[k].step()
            for k in optimizers_dict:
                if k != 'training':
                    optimizers_dict[k].zero_grad(set_to_none=True)
            self.info.total_steps += 1
        else:
           
            loss_adjusted.backward()
           
            grad_norm = torch.tensor(0.0).to(self.device)
        
        return grad_norm


    def encode_latents(self, batch: dict, models: Models, extras: Extras, target_size=None) -> torch.Tensor:
        
        images = batch['images'].to(self.device)
        if target_size is not None:
          images = F.interpolate(images, target_size)
          
        return models.effnet(extras.effnet_preprocess(images))

    def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
        return models.previewer(latents)

    def __init__(self, rank=0, config_file_path=None, config_dict=None, device="cpu", training=True, world_size=1, ):

        self.is_main_node = (rank == 0)
        self.config: self.Config = self.setup_config(config_file_path, config_dict, training)
        self.setup_ddp(self.config.experiment_id, single_gpu=world_size <= 1, rank=rank)
        self.info: self.Info = self.setup_info()
        
       
        
    def __call__(self, single_gpu=False):
        
        if self.config.allow_tf32:
            torch.backends.cuda.matmul.allow_tf32 = True
            torch.backends.cudnn.allow_tf32 = True

        if self.is_main_node:
            print()
            print("**STARTIG JOB WITH CONFIG:**")
            print(yaml.dump(self.config.to_dict(), default_flow_style=False))
            print("------------------------------------")
            print()
            print("**INFO:**")
            print(yaml.dump(vars(self.info), default_flow_style=False))
            print("------------------------------------")
            print()
        
        # SETUP STUFF
        extras = self.setup_extras_pre()
        assert extras is not None, "setup_extras_pre() must return a DTO"



        data = self.setup_data(extras)
        assert data is not None, "setup_data() must return a DTO"
        if self.is_main_node:
            print("**DATA:**")
            print(yaml.dump({k:type(v).__name__ for k, v in data.to_dict().items()}, default_flow_style=False))
            print("------------------------------------")
            print()

        models = self.setup_models(extras)
        assert models is not None, "setup_models() must return a DTO"
        if self.is_main_node:
            print("**MODELS:**")
            print(yaml.dump({
                k:f"{type(v).__name__} - {f'trainable params {sum(p.numel() for p in v.parameters() if p.requires_grad)}' if isinstance(v, nn.Module) else 'Not a nn.Module'}" for k, v in models.to_dict().items()
            }, default_flow_style=False))
            print("------------------------------------")
            print()



        optimizers = self.setup_optimizers(extras, models)
        assert optimizers is not None, "setup_optimizers() must return a DTO"
        if self.is_main_node:
            print("**OPTIMIZERS:**")
            print(yaml.dump({k:type(v).__name__ for k, v in optimizers.to_dict().items()}, default_flow_style=False))
            print("------------------------------------")
            print()

        schedulers = self.setup_schedulers(extras, models, optimizers)
        assert schedulers is not None, "setup_schedulers() must return a DTO"
        if self.is_main_node:
            print("**SCHEDULERS:**")
            print(yaml.dump({k:type(v).__name__ for k, v in schedulers.to_dict().items()}, default_flow_style=False))
            print("------------------------------------")
            print()

        post_extras =self.setup_extras_post(extras, models, optimizers, schedulers)
        assert post_extras is not None, "setup_extras_post() must return a DTO"
        extras = self.Extras.from_dict({ **extras.to_dict(),**post_extras.to_dict() })
        if self.is_main_node:
            print("**EXTRAS:**")
            print(yaml.dump({k:f"{v}" for k, v in extras.to_dict().items()}, default_flow_style=False))
            print("------------------------------------")
            print()
        # -------

        # TRAIN
        if self.is_main_node:
            print("**TRAINING STARTING...**")
        self.train(data, extras, models, optimizers, schedulers)

        if single_gpu is False:
            barrier()
            destroy_process_group()
        if self.is_main_node:
            print()
            print("------------------------------------")
            print()
            print("**TRAINING COMPLETE**")
           


    def train(self, data: WarpCore.Data, extras: WarpCore.Extras, models: Models, optimizers: TrainingCore.Optimizers,
              schedulers: WarpCore.Schedulers):
        start_iter = self.info.iter + 1
        max_iters = self.config.updates * self.config.grad_accum_steps
        if self.is_main_node:
            print(f"STARTING AT STEP: {start_iter}/{max_iters}")

     
        if self.is_main_node:
            create_folder_if_necessary(f'{self.config.output_path}/{self.config.experiment_id}/')
        
        models.generator.train()
     
        iter_cnt = 0
        epoch_cnt = 0
        models.train_norm.train()
        while True:
          epoch_cnt += 1
          if self.world_size > 1:
            
            data.sampler.set_epoch(epoch_cnt)  
          for ggg in range(len(data.dataloader)):
              iter_cnt += 1
              loss, loss_adjusted = self.forward_pass(next(data.iterator), extras, models)
              grad_norm = self.backward_pass(
                        iter_cnt % self.config.grad_accum_steps == 0 or iter_cnt == max_iters, loss_adjusted,
                        models, optimizers, schedulers
                      )

              self.info.iter = iter_cnt
              
             
              # UPDATE LOSS METRICS
              self.info.ema_loss = loss.mean().item() if self.info.ema_loss is None else self.info.ema_loss * 0.99 + loss.mean().item() * 0.01
  
              #print('in line 666 after ema loss', grad_norm, loss.mean().item(), iter_cnt, self.info.ema_loss)
              if self.is_main_node and  np.isnan(loss.mean().item()) or np.isnan(grad_norm.item()):
                      print(f" NaN value encountered in training run {self.info.wandb_run_id}", \
                      f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}")
  
              if self.is_main_node:
                  logs = {
                      'loss': self.info.ema_loss,
                      'backward_loss': loss_adjusted.mean().item(),
                      'ema_loss': self.info.ema_loss,
                      'raw_ori_loss': loss.mean().item(),
                      'grad_norm': grad_norm.item(),
                      'lr': optimizers.generator.param_groups[0]['lr'] if optimizers.generator is not None else 0,
                      'total_steps': self.info.total_steps,
                  }
                  if iter_cnt % (self.config.save_every) == 0:
                        
                      print(iter_cnt, max_iters, logs, epoch_cnt, )
                  
                  
              
              if iter_cnt == 1 or iter_cnt % (self.config.save_every  ) == 0 or iter_cnt == max_iters:
             
                  # SAVE AND CHECKPOINT STUFF
                  if np.isnan(loss.mean().item()):
                      if self.is_main_node and self.config.wandb_project is not None:
                          print(f"NaN value encountered in training run {self.info.wandb_run_id}", \
                          f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}")
                     
                  else:
                      if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
                          self.info.adaptive_loss = {
                              'bucket_ranges': extras.gdf.loss_weight.bucket_ranges.tolist(),
                              'bucket_losses': extras.gdf.loss_weight.bucket_losses.tolist(),
                          }
                     
                      
                      
                      if self.is_main_node and iter_cnt % (self.config.save_every * self.config.grad_accum_steps) == 0:
                          print('save model', iter_cnt, iter_cnt % (self.config.save_every * self.config.grad_accum_steps), self.config.save_every, self.config.grad_accum_steps )
                          torch.save(models.train_norm.state_dict(), \
                          f'{self.config.output_path}/{self.config.experiment_id}/train_norm.safetensors')

                          torch.save(models.train_norm.state_dict(), \
                              f'{self.config.output_path}/{self.config.experiment_id}/train_norm_{iter_cnt}.safetensors')
                          
                       
              if iter_cnt == 1 or iter_cnt % (self.config.save_every* self.config.grad_accum_steps) == 0 or iter_cnt == max_iters:
                  
                  if self.is_main_node:
                     
                     self.sample(models, data, extras)
            
         
          if self.info.iter >= max_iters:
            break
            
    def sample(self, models: Models, data: WarpCore.Data, extras: Extras):
       
       
        models.generator.eval()
        models.train_norm.eval()
        with torch.no_grad():
            batch = next(data.iterator)
            ratio = batch['images'].shape[-2] / batch['images'].shape[-1]
           
            shape_lr = self.get_target_lr_size(ratio)
            conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
            unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)

            latents = self.encode_latents(batch, models, extras)
            latents_lr = self.encode_latents(batch, models, extras, target_size = shape_lr)
           
            
            if self.is_main_node:
                
                with torch.cuda.amp.autocast(dtype=torch.bfloat16):
                    
                    *_, (sampled, _, _, sampled_lr) = extras.gdf.sample(
                        models.generator, conditions,
                        latents.shape, latents_lr.shape, 
                        unconditions, device=self.device, **extras.sampling_configs
                    )
    
                   
            
            
            if self.is_main_node:
                print('sampling results hr latent shape', latents.shape, 'lr latent shape', latents_lr.shape, )
                noised_images = torch.cat(
                    [self.decode_latents(latents[i:i + 1].float(), batch, models, extras) for i in range(len(latents))], dim=0)
                
                sampled_images = torch.cat(
                    [self.decode_latents(sampled[i:i + 1].float(), batch, models, extras) for i in range(len(sampled))], dim=0)

                    
                noised_images_lr = torch.cat(
                    [self.decode_latents(latents_lr[i:i + 1].float(), batch, models, extras) for i in range(len(latents_lr))], dim=0)
                
                sampled_images_lr = torch.cat(
                    [self.decode_latents(sampled_lr[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_lr))], dim=0)

                images = batch['images']
                if images.size(-1) != noised_images.size(-1) or images.size(-2) != noised_images.size(-2):
                    images = nn.functional.interpolate(images, size=noised_images.shape[-2:], mode='bicubic')
                    images_lr = nn.functional.interpolate(images, size=noised_images_lr.shape[-2:], mode='bicubic')

                collage_img = torch.cat([
                    torch.cat([i for i in images.cpu()], dim=-1),
                    torch.cat([i for i in noised_images.cpu()], dim=-1),
                    torch.cat([i for i in sampled_images.cpu()], dim=-1),
                ], dim=-2)
                
                collage_img_lr = torch.cat([
                    torch.cat([i for i in images_lr.cpu()], dim=-1),
                    torch.cat([i for i in noised_images_lr.cpu()], dim=-1),
                    torch.cat([i for i in sampled_images_lr.cpu()], dim=-1),
                ], dim=-2)

                torchvision.utils.save_image(collage_img, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}.jpg')
                torchvision.utils.save_image(collage_img_lr, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}_lr.jpg')
               
           
            models.generator.train()
            models.train_norm.train()
            print('finish sampling')
    
    
    
    def sample_fortest(self, models: Models, extras: Extras, hr_shape, lr_shape, batch, eval_image_embeds=False):
       
      
        models.generator.eval()
        
        with torch.no_grad():
           
            if self.is_main_node:
                conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=eval_image_embeds)
                unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
               
                with torch.cuda.amp.autocast(dtype=torch.bfloat16):
                   
                    *_, (sampled, _, _, sampled_lr) = extras.gdf.sample(
                        models.generator, conditions,
                        hr_shape, lr_shape, 
                        unconditions, device=self.device, **extras.sampling_configs
                    )
    
                    if models.generator_ema is not None:
                        
                        *_, (sampled_ema, _, _, sampled_ema_lr) = extras.gdf.sample(
                            models.generator_ema,  conditions,
                            latents.shape, latents_lr.shape, 
                            unconditions, device=self.device, **extras.sampling_configs
                        )
                       
                    else:
                        sampled_ema = sampled
                        sampled_ema_lr = sampled_lr

        return sampled, sampled_lr
def main_worker(rank, cfg):
    print("Launching Script in main worker")
   
    warpcore = WurstCore(
        config_file_path=cfg, rank=rank, world_size = get_world_size()
    )
    # core.fsdp_defaults['sharding_strategy'] = ShardingStrategy.NO_SHARD

    # RUN TRAINING
    warpcore(get_world_size()==1)

if __name__ == '__main__':
    print('launch multi process')
    # os.environ["OMP_NUM_THREADS"] = "1" 
    # os.environ["MKL_NUM_THREADS"] = "1" 
    #dist.init_process_group(backend="nccl")
    #torch.backends.cudnn.benchmark = True
#train/train_c_my.py
    #mp.set_sharing_strategy('file_system')

    if get_master_ip() == "127.0.0.1":
        # manually launch distributed processes
        mp.spawn(main_worker, nprocs=get_world_size(), args=(sys.argv[1] if len(sys.argv) > 1 else None, ))
    else:
        main_worker(0, sys.argv[1] if len(sys.argv) > 1 else None, )