aiqcamp's picture
Update app.py
f127a22 verified
raw
history blame
13.4 kB
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
import subprocess
# Flash Attention 설치
subprocess.run('pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True)
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
torch.backends.cuda.matmul.allow_tf32 = True
# Create gallery directory
if not path.exists(gallery_path):
os.makedirs(gallery_path, exist_ok=True)
# Florence 모델 초기화
florence_models = {
'gokaygokay/Florence-2-Flux-Large': AutoModelForCausalLM.from_pretrained(
'gokaygokay/Florence-2-Flux-Large',
trust_remote_code=True
).eval(),
'gokaygokay/Florence-2-Flux': AutoModelForCausalLM.from_pretrained(
'gokaygokay/Florence-2-Flux',
trust_remote_code=True
).eval(),
}
florence_processors = {
'gokaygokay/Florence-2-Flux-Large': AutoProcessor.from_pretrained(
'gokaygokay/Florence-2-Flux-Large',
trust_remote_code=True
),
'gokaygokay/Florence-2-Flux': AutoProcessor.from_pretrained(
'gokaygokay/Florence-2-Flux',
trust_remote_code=True
),
}
def filter_prompt(prompt):
inappropriate_keywords = [
"nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
"erotic", "sensual", "seductive", "provocative", "intimate",
"violence", "gore", "blood", "death", "kill", "murder", "torture",
"drug", "suicide", "abuse", "hate", "discrimination"
]
prompt_lower = prompt.lower()
for keyword in inappropriate_keywords:
if keyword in prompt_lower:
return False, "부적절한 내용이 포함된 프롬프트입니다."
return True, prompt
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
)
pipe.load_lora_weights(
hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors"
)
)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker"
)
# CSS 스타일
css = """
footer {display: none !important}
.gradio-container {
max-width: 1200px;
margin: auto;
}
.contain {
background: rgba(255, 255, 255, 0.05);
border-radius: 12px;
padding: 20px;
}
.generate-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
border: none !important;
color: white !important;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.title {
text-align: center;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 1em;
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.tabs {
margin-top: 20px;
border-radius: 10px;
overflow: hidden;
}
.tab-nav {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
padding: 10px;
}
.tab-nav button {
color: white;
border: none;
padding: 10px 20px;
margin: 0 5px;
border-radius: 5px;
transition: all 0.3s ease;
}
.tab-nav button.selected {
background: rgba(255, 255, 255, 0.2);
}
.image-upload-container {
border: 2px dashed #4B79A1;
border-radius: 10px;
padding: 20px;
text-align: center;
transition: all 0.3s ease;
}
.image-upload-container:hover {
border-color: #283E51;
background: rgba(75, 121, 161, 0.1);
}
"""
# CSS에 추가할 스타일
additional_css = """
.primary-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
font-size: 1.2em !important;
padding: 12px 20px !important;
margin-top: 20px !important;
}
hr {
border: none;
border-top: 1px solid rgba(75, 121, 161, 0.2);
margin: 20px 0;
}
.input-section {
background: rgba(255, 255, 255, 0.03);
border-radius: 12px;
padding: 20px;
margin-bottom: 20px;
}
.output-section {
background: rgba(255, 255, 255, 0.03);
border-radius: 12px;
padding: 20px;
}
"""
# 기존 CSS에 새로운 스타일 추가
css = css + additional_css
def save_image(image):
"""Save the generated image and return the path"""
try:
if not os.path.exists(gallery_path):
try:
os.makedirs(gallery_path, exist_ok=True)
except Exception as e:
print(f"Failed to create gallery directory: {str(e)}")
return None
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
random_suffix = os.urandom(4).hex()
filename = f"generated_{timestamp}_{random_suffix}.png"
filepath = os.path.join(gallery_path, filename)
try:
if isinstance(image, Image.Image):
image.save(filepath, "PNG", quality=100)
else:
image = Image.fromarray(image)
image.save(filepath, "PNG", quality=100)
if not os.path.exists(filepath):
print(f"Warning: Failed to verify saved image at {filepath}")
return None
return filepath
except Exception as e:
print(f"Failed to save image: {str(e)}")
return None
except Exception as e:
print(f"Error in save_image: {str(e)}")
return None
def load_gallery():
try:
os.makedirs(gallery_path, exist_ok=True)
image_files = []
for f in os.listdir(gallery_path):
if f.lower().endswith(('.png', '.jpg', '.jpeg')):
full_path = os.path.join(gallery_path, f)
image_files.append((full_path, os.path.getmtime(full_path)))
image_files.sort(key=lambda x: x[1], reverse=True)
return [f[0] for f in image_files]
except Exception as e:
print(f"Error loading gallery: {str(e)}")
return []
@spaces.GPU
def generate_caption(image, model_name='gokaygokay/Florence-2-Flux-Large'):
image = Image.fromarray(image)
task_prompt = "<DESCRIPTION>"
prompt = task_prompt + "Describe this image in great detail."
if image.mode != "RGB":
image = image.convert("RGB")
model = florence_models[model_name]
processor = florence_processors[model_name]
inputs = processor(text=prompt, images=image, return_tensors="pt")
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
repetition_penalty=1.10,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
return parsed_answer["<DESCRIPTION>"]
@spaces.GPU
def process_and_save_image(height, width, steps, scales, prompt, seed):
is_safe, filtered_prompt = filter_prompt(prompt)
if not is_safe:
gr.Warning("The prompt contains inappropriate content.")
return None, load_gallery()
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
try:
generated_image = pipe(
prompt=[filtered_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
saved_path = save_image(generated_image)
if saved_path is None:
print("Warning: Failed to save generated image")
return generated_image, load_gallery()
except Exception as e:
print(f"Error in image generation: {str(e)}")
return None, load_gallery()
def get_random_seed():
return torch.randint(0, 1000000, (1,)).item()
def update_seed():
return get_random_seed()
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML('<div class="title">AI Image Generator & Caption</div>')
gr.HTML('<div style="text-align: center; margin-bottom: 2em;">Upload an image for caption or create from text description</div>')
with gr.Row():
# 왼쪽 컬럼: 입력 섹션
with gr.Column(scale=3):
# 이미지 업로드 섹션
input_image = gr.Image(
label="Upload Image (Optional)",
type="numpy",
elem_classes=["image-upload-container"]
)
florence_model = gr.Dropdown(
choices=list(florence_models.keys()),
label="Caption Model",
value='gokaygokay/Florence-2-Flux-Large',
visible=True
)
caption_button = gr.Button(
"🔍 Generate Caption from Image",
elem_classes=["generate-btn"]
)
# 구분선
gr.HTML('<hr style="margin: 20px 0;">')
# 텍스트 프롬프트 섹션
prompt = gr.Textbox(
label="Image Description",
placeholder="Enter text description or use generated caption above...",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed",
value=get_random_seed(),
precision=0
)
randomize_seed = gr.Button(
"🎲 Randomize Seed",
elem_classes=["generate-btn"]
)
generate_btn = gr.Button(
"✨ Generate Image",
elem_classes=["generate-btn", "primary-btn"]
)
# 오른쪽 컬럼: 출력 섹션
with gr.Column(scale=4):
output = gr.Image(
label="Generated Image",
elem_classes=["output-image"]
)
gallery = gr.Gallery(
label="Generated Images Gallery",
show_label=True,
columns=[4],
rows=[2],
height="auto",
object_fit="cover",
elem_classes=["gallery-container"]
)
gallery.value = load_gallery()
# Event handlers
caption_button.click(
generate_caption,
inputs=[input_image, florence_model],
outputs=[prompt]
)
generate_btn.click(
process_and_save_image,
inputs=[height, width, steps, scales, prompt, seed],
outputs=[output, gallery]
)
randomize_seed.click(
update_seed,
outputs=[seed]
)
generate_btn.click(
update_seed,
outputs=[seed]
)
if __name__ == "__main__":
demo.launch(allowed_paths=[PERSISTENT_DIR])