FLUX-VisionReply / train /train_b.py
gokaygokay's picture
full_files
2f4febc
raw
history blame
14.4 kB
import torch
import torchvision
from torch import nn, optim
from transformers import AutoTokenizer, CLIPTextModelWithProjection
from warmup_scheduler import GradualWarmupScheduler
import numpy as np
import sys
import os
from dataclasses import dataclass
from gdf import GDF, EpsilonTarget, CosineSchedule
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
from torchtools.transforms import SmartCrop
from modules.effnet import EfficientNetEncoder
from modules.stage_a import StageA
from modules.stage_b import StageB
from modules.stage_b import ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock
from train.base import DataCore, TrainingCore
from core import WarpCore
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from contextlib import contextmanager
class WurstCore(TrainingCore, DataCore, WarpCore):
@dataclass(frozen=True)
class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config):
# TRAINING PARAMS
lr: float = EXPECTED_TRAIN
warmup_updates: int = EXPECTED_TRAIN
shift: float = EXPECTED_TRAIN
dtype: str = None
# MODEL VERSION
model_version: str = EXPECTED # 3BB or 700M
clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k'
# CHECKPOINT PATHS
stage_a_checkpoint_path: str = EXPECTED
effnet_checkpoint_path: str = EXPECTED
generator_checkpoint_path: str = None
# gdf customization
adaptive_loss_weight: str = None
@dataclass(frozen=True)
class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models):
effnet: nn.Module = EXPECTED
stage_a: nn.Module = EXPECTED
@dataclass(frozen=True)
class Schedulers(WarpCore.Schedulers):
generator: any = None
@dataclass(frozen=True)
class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras):
gdf: GDF = EXPECTED
sampling_configs: dict = EXPECTED
effnet_preprocess: torchvision.transforms.Compose = EXPECTED
info: TrainingCore.Info
config: Config
def setup_extras_pre(self) -> Extras:
gdf = GDF(
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
input_scaler=VPScaler(), target=EpsilonTarget(),
noise_cond=CosineTNoiseCond(),
loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(),
)
sampling_configs = {"cfg": 1.5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 10}
if self.info.adaptive_loss is not None:
gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges'])
gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses'])
effnet_preprocess = torchvision.transforms.Compose([
torchvision.transforms.Normalize(
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
)
])
transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize(self.config.image_size,
interpolation=torchvision.transforms.InterpolationMode.BILINEAR,
antialias=True),
SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2) if self.config.training else torchvision.transforms.CenterCrop(self.config.image_size)
])
return self.Extras(
gdf=gdf,
sampling_configs=sampling_configs,
transforms=transforms,
effnet_preprocess=effnet_preprocess,
clip_preprocess=None
)
def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False, eval_image_embeds=False, return_fields=None):
images = batch.get('images', None)
if images is not None:
images = images.to(self.device)
if is_eval and not is_unconditional:
effnet_embeddings = models.effnet(extras.effnet_preprocess(images))
else:
if is_eval:
effnet_factor = 1
else:
effnet_factor = np.random.uniform(0.5, 1) # f64 to f32
effnet_height, effnet_width = int(((images.size(-2)*effnet_factor)//32)*32), int(((images.size(-1)*effnet_factor)//32)*32)
effnet_embeddings = torch.zeros(images.size(0), 16, effnet_height//32, effnet_width//32, device=self.device)
if not is_eval:
effnet_images = torchvision.transforms.functional.resize(images, (effnet_height, effnet_width), interpolation=torchvision.transforms.InterpolationMode.NEAREST)
rand_idx = np.random.rand(len(images)) <= 0.9
if any(rand_idx):
effnet_embeddings[rand_idx] = models.effnet(extras.effnet_preprocess(effnet_images[rand_idx]))
else:
effnet_embeddings = None
conditions = super().get_conditions(
batch, models, extras, is_eval, is_unconditional,
eval_image_embeds, return_fields=return_fields or ['clip_text_pooled']
)
return {'effnet': effnet_embeddings, 'clip': conditions['clip_text_pooled']}
def setup_models(self, extras: Extras, skip_clip: bool = False) -> Models:
dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.float32
# EfficientNet encoder
effnet = EfficientNetEncoder().to(self.device)
effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path)
effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict'])
effnet.eval().requires_grad_(False)
del effnet_checkpoint
# vqGAN
stage_a = StageA().to(self.device)
stage_a_checkpoint = load_or_fail(self.config.stage_a_checkpoint_path)
stage_a.load_state_dict(stage_a_checkpoint if 'state_dict' not in stage_a_checkpoint else stage_a_checkpoint['state_dict'])
stage_a.eval().requires_grad_(False)
del stage_a_checkpoint
@contextmanager
def dummy_context():
yield None
loading_context = dummy_context if self.config.training else init_empty_weights
# Diffusion models
with loading_context():
generator_ema = None
if self.config.model_version == '3B':
generator = StageB(c_hidden=[320, 640, 1280, 1280], nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]], block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]])
if self.config.ema_start_iters is not None:
generator_ema = StageB(c_hidden=[320, 640, 1280, 1280], nhead=[-1, -1, 20, 20], blocks=[[2, 6, 28, 6], [6, 28, 6, 2]], block_repeat=[[1, 1, 1, 1], [3, 3, 2, 2]])
elif self.config.model_version == '700M':
generator = StageB(c_hidden=[320, 576, 1152, 1152], nhead=[-1, 9, 18, 18], blocks=[[2, 4, 14, 4], [4, 14, 4, 2]], block_repeat=[[1, 1, 1, 1], [2, 2, 2, 2]])
if self.config.ema_start_iters is not None:
generator_ema = StageB(c_hidden=[320, 576, 1152, 1152], nhead=[-1, 9, 18, 18], blocks=[[2, 4, 14, 4], [4, 14, 4, 2]], block_repeat=[[1, 1, 1, 1], [2, 2, 2, 2]])
else:
raise ValueError(f"Unknown model version {self.config.model_version}")
if self.config.generator_checkpoint_path is not None:
if loading_context is dummy_context:
generator.load_state_dict(load_or_fail(self.config.generator_checkpoint_path))
else:
for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items():
set_module_tensor_to_device(generator, param_name, "cpu", value=param)
generator = generator.to(dtype).to(self.device)
generator = self.load_model(generator, 'generator')
if generator_ema is not None:
if loading_context is dummy_context:
generator_ema.load_state_dict(generator.state_dict())
else:
for param_name, param in generator.state_dict().items():
set_module_tensor_to_device(generator_ema, param_name, "cpu", value=param)
generator_ema = self.load_model(generator_ema, 'generator_ema')
generator_ema.to(dtype).to(self.device).eval().requires_grad_(False)
if self.config.use_fsdp:
fsdp_auto_wrap_policy = ModuleWrapPolicy([ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock])
generator = FSDP(generator, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device)
if generator_ema is not None:
generator_ema = FSDP(generator_ema, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device)
if skip_clip:
tokenizer = None
text_model = None
else:
tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name)
text_model = CLIPTextModelWithProjection.from_pretrained(self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device)
return self.Models(
effnet=effnet, stage_a=stage_a,
generator=generator, generator_ema=generator_ema,
tokenizer=tokenizer, text_model=text_model
)
def setup_optimizers(self, extras: Extras, models: Models) -> TrainingCore.Optimizers:
optimizer = optim.AdamW(models.generator.parameters(), lr=self.config.lr) # , eps=1e-7, betas=(0.9, 0.95))
optimizer = self.load_optimizer(optimizer, 'generator_optim',
fsdp_model=models.generator if self.config.use_fsdp else None)
return self.Optimizers(generator=optimizer)
def setup_schedulers(self, extras: Extras, models: Models,
optimizers: TrainingCore.Optimizers) -> Schedulers:
scheduler = GradualWarmupScheduler(optimizers.generator, multiplier=1, total_epoch=self.config.warmup_updates)
scheduler.last_epoch = self.info.total_steps
return self.Schedulers(generator=scheduler)
def _pyramid_noise(self, epsilon, size_range=None, levels=10, scale_mode='nearest'):
epsilon = epsilon.clone()
multipliers = [1]
for i in range(1, levels):
m = 0.75 ** i
h, w = epsilon.size(-2) // (2 ** i), epsilon.size(-2) // (2 ** i)
if size_range is None or (size_range[0] <= h <= size_range[1] or size_range[0] <= w <= size_range[1]):
offset = torch.randn(epsilon.size(0), epsilon.size(1), h, w, device=self.device)
epsilon = epsilon + torch.nn.functional.interpolate(offset, size=epsilon.shape[-2:],
mode=scale_mode) * m
multipliers.append(m)
if h <= 1 or w <= 1:
break
epsilon = epsilon / sum([m ** 2 for m in multipliers]) ** 0.5
# epsilon = epsilon / epsilon.std()
return epsilon
def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models):
batch = next(data.iterator)
with torch.no_grad():
conditions = self.get_conditions(batch, models, extras)
latents = self.encode_latents(batch, models, extras)
epsilon = torch.randn_like(latents)
epsilon = self._pyramid_noise(epsilon, size_range=[1, 16])
noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1,
epsilon=epsilon)
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
pred = models.generator(noised, noise_cond, **conditions)
loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3])
loss_adjusted = (loss * loss_weight).mean() / self.config.grad_accum_steps
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
extras.gdf.loss_weight.update_buckets(logSNR, loss)
return loss, loss_adjusted
def backward_pass(self, update, loss, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers,
schedulers: Schedulers):
if update:
loss_adjusted.backward()
grad_norm = nn.utils.clip_grad_norm_(models.generator.parameters(), 1.0)
optimizers_dict = optimizers.to_dict()
for k in optimizers_dict:
if k != 'training':
optimizers_dict[k].step()
schedulers_dict = schedulers.to_dict()
for k in schedulers_dict:
if k != 'training':
schedulers_dict[k].step()
for k in optimizers_dict:
if k != 'training':
optimizers_dict[k].zero_grad(set_to_none=True)
self.info.total_steps += 1
else:
loss_adjusted.backward()
grad_norm = torch.tensor(0.0).to(self.device)
return grad_norm
def models_to_save(self):
return ['generator', 'generator_ema']
def encode_latents(self, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
images = batch['images'].to(self.device)
return models.stage_a.encode(images)[0]
def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
return models.stage_a.decode(latents.float()).clamp(0, 1)
if __name__ == '__main__':
print("Launching Script")
warpcore = WurstCore(
config_file_path=sys.argv[1] if len(sys.argv) > 1 else None,
device=torch.device(int(os.environ.get("SLURM_LOCALID")))
)
# core.fsdp_defaults['sharding_strategy'] = ShardingStrategy.NO_SHARD
# RUN TRAINING
warpcore()