Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,470 +1,2 @@
|
|
1 |
-
import spaces
|
2 |
-
import argparse
|
3 |
import os
|
4 |
-
|
5 |
-
from os import path
|
6 |
-
import shutil
|
7 |
-
from datetime import datetime
|
8 |
-
from safetensors.torch import load_file
|
9 |
-
from huggingface_hub import hf_hub_download
|
10 |
-
import gradio as gr
|
11 |
-
import torch
|
12 |
-
from diffusers import FluxPipeline
|
13 |
-
from diffusers.pipelines.stable_diffusion import safety_checker
|
14 |
-
from PIL import Image
|
15 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
16 |
-
import subprocess
|
17 |
-
|
18 |
-
# Flash Attention 설치
|
19 |
-
subprocess.run('pip install flash-attn --no-build-isolation',
|
20 |
-
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
|
21 |
-
shell=True)
|
22 |
-
|
23 |
-
# Setup and initialization code
|
24 |
-
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
25 |
-
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
|
26 |
-
gallery_path = path.join(PERSISTENT_DIR, "gallery")
|
27 |
-
|
28 |
-
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
29 |
-
os.environ["HF_HUB_CACHE"] = cache_path
|
30 |
-
os.environ["HF_HOME"] = cache_path
|
31 |
-
|
32 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
33 |
-
|
34 |
-
# Create gallery directory
|
35 |
-
if not path.exists(gallery_path):
|
36 |
-
os.makedirs(gallery_path, exist_ok=True)
|
37 |
-
|
38 |
-
# Florence 모델 초기화
|
39 |
-
florence_models = {
|
40 |
-
'gokaygokay/Florence-2-Flux-Large': AutoModelForCausalLM.from_pretrained(
|
41 |
-
'gokaygokay/Florence-2-Flux-Large',
|
42 |
-
trust_remote_code=True
|
43 |
-
).eval(),
|
44 |
-
'gokaygokay/Florence-2-Flux': AutoModelForCausalLM.from_pretrained(
|
45 |
-
'gokaygokay/Florence-2-Flux',
|
46 |
-
trust_remote_code=True
|
47 |
-
).eval(),
|
48 |
-
}
|
49 |
-
|
50 |
-
florence_processors = {
|
51 |
-
'gokaygokay/Florence-2-Flux-Large': AutoProcessor.from_pretrained(
|
52 |
-
'gokaygokay/Florence-2-Flux-Large',
|
53 |
-
trust_remote_code=True
|
54 |
-
),
|
55 |
-
'gokaygokay/Florence-2-Flux': AutoProcessor.from_pretrained(
|
56 |
-
'gokaygokay/Florence-2-Flux',
|
57 |
-
trust_remote_code=True
|
58 |
-
),
|
59 |
-
}
|
60 |
-
|
61 |
-
def filter_prompt(prompt):
|
62 |
-
inappropriate_keywords = [
|
63 |
-
"sex"
|
64 |
-
]
|
65 |
-
|
66 |
-
# "nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
|
67 |
-
# "erotic", "sensual", "seductive", "provocative", "intimate",
|
68 |
-
# "violence", "gore", "blood", "death", "kill", "murder", "torture",
|
69 |
-
# "drug", "suicide", "abuse", "hate", "discrimination"
|
70 |
-
# ]
|
71 |
-
|
72 |
-
prompt_lower = prompt.lower()
|
73 |
-
|
74 |
-
for keyword in inappropriate_keywords:
|
75 |
-
if keyword in prompt_lower:
|
76 |
-
return False, "부적절한 내용이 포함된 프롬프트입니다."
|
77 |
-
|
78 |
-
return True, prompt
|
79 |
-
|
80 |
-
class timer:
|
81 |
-
def __init__(self, method_name="timed process"):
|
82 |
-
self.method = method_name
|
83 |
-
def __enter__(self):
|
84 |
-
self.start = time.time()
|
85 |
-
print(f"{self.method} starts")
|
86 |
-
def __exit__(self, exc_type, exc_val, exc_tb):
|
87 |
-
end = time.time()
|
88 |
-
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
89 |
-
|
90 |
-
# Model initialization
|
91 |
-
if not path.exists(cache_path):
|
92 |
-
os.makedirs(cache_path, exist_ok=True)
|
93 |
-
|
94 |
-
pipe = FluxPipeline.from_pretrained(
|
95 |
-
"black-forest-labs/FLUX.1-dev",
|
96 |
-
torch_dtype=torch.bfloat16
|
97 |
-
)
|
98 |
-
pipe.load_lora_weights(
|
99 |
-
hf_hub_download(
|
100 |
-
"ByteDance/Hyper-SD",
|
101 |
-
"Hyper-FLUX.1-dev-8steps-lora.safetensors"
|
102 |
-
)
|
103 |
-
)
|
104 |
-
pipe.fuse_lora(lora_scale=0.125)
|
105 |
-
pipe.to(device="cuda", dtype=torch.bfloat16)
|
106 |
-
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained(
|
107 |
-
"CompVis/stable-diffusion-safety-checker"
|
108 |
-
)
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
def save_image(image):
|
113 |
-
"""Save the generated image and return the path"""
|
114 |
-
try:
|
115 |
-
if not os.path.exists(gallery_path):
|
116 |
-
try:
|
117 |
-
os.makedirs(gallery_path, exist_ok=True)
|
118 |
-
except Exception as e:
|
119 |
-
print(f"Failed to create gallery directory: {str(e)}")
|
120 |
-
return None
|
121 |
-
|
122 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
123 |
-
random_suffix = os.urandom(4).hex()
|
124 |
-
filename = f"generated_{timestamp}_{random_suffix}.png"
|
125 |
-
filepath = os.path.join(gallery_path, filename)
|
126 |
-
|
127 |
-
try:
|
128 |
-
if isinstance(image, Image.Image):
|
129 |
-
image.save(filepath, "PNG", quality=100)
|
130 |
-
else:
|
131 |
-
image = Image.fromarray(image)
|
132 |
-
image.save(filepath, "PNG", quality=100)
|
133 |
-
|
134 |
-
if not os.path.exists(filepath):
|
135 |
-
print(f"Warning: Failed to verify saved image at {filepath}")
|
136 |
-
return None
|
137 |
-
|
138 |
-
return filepath
|
139 |
-
except Exception as e:
|
140 |
-
print(f"Failed to save image: {str(e)}")
|
141 |
-
return None
|
142 |
-
|
143 |
-
except Exception as e:
|
144 |
-
print(f"Error in save_image: {str(e)}")
|
145 |
-
return None
|
146 |
-
|
147 |
-
def load_gallery():
|
148 |
-
try:
|
149 |
-
os.makedirs(gallery_path, exist_ok=True)
|
150 |
-
|
151 |
-
image_files = []
|
152 |
-
for f in os.listdir(gallery_path):
|
153 |
-
if f.lower().endswith(('.png', '.jpg', '.jpeg')):
|
154 |
-
full_path = os.path.join(gallery_path, f)
|
155 |
-
image_files.append((full_path, os.path.getmtime(full_path)))
|
156 |
-
|
157 |
-
image_files.sort(key=lambda x: x[1], reverse=True)
|
158 |
-
return [f[0] for f in image_files]
|
159 |
-
except Exception as e:
|
160 |
-
print(f"Error loading gallery: {str(e)}")
|
161 |
-
return []
|
162 |
-
|
163 |
-
@spaces.GPU
|
164 |
-
def generate_caption(image, model_name='gokaygokay/Florence-2-Flux-Large'):
|
165 |
-
image = Image.fromarray(image)
|
166 |
-
task_prompt = "<DESCRIPTION>"
|
167 |
-
prompt = task_prompt + "Describe this image in great detail."
|
168 |
-
|
169 |
-
if image.mode != "RGB":
|
170 |
-
image = image.convert("RGB")
|
171 |
-
|
172 |
-
model = florence_models[model_name]
|
173 |
-
processor = florence_processors[model_name]
|
174 |
-
|
175 |
-
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
176 |
-
generated_ids = model.generate(
|
177 |
-
input_ids=inputs["input_ids"],
|
178 |
-
pixel_values=inputs["pixel_values"],
|
179 |
-
max_new_tokens=1024,
|
180 |
-
num_beams=3,
|
181 |
-
repetition_penalty=1.10,
|
182 |
-
)
|
183 |
-
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
184 |
-
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
185 |
-
return parsed_answer["<DESCRIPTION>"]
|
186 |
-
|
187 |
-
@spaces.GPU
|
188 |
-
def process_and_save_image(height, width, steps, scales, prompt, seed):
|
189 |
-
is_safe, filtered_prompt = filter_prompt(prompt)
|
190 |
-
if not is_safe:
|
191 |
-
gr.Warning("The prompt contains inappropriate content.")
|
192 |
-
return None, load_gallery()
|
193 |
-
|
194 |
-
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
195 |
-
try:
|
196 |
-
generated_image = pipe(
|
197 |
-
prompt=[filtered_prompt],
|
198 |
-
generator=torch.Generator().manual_seed(int(seed)),
|
199 |
-
num_inference_steps=int(steps),
|
200 |
-
guidance_scale=float(scales),
|
201 |
-
height=int(height),
|
202 |
-
width=int(width),
|
203 |
-
max_sequence_length=256
|
204 |
-
).images[0]
|
205 |
-
|
206 |
-
saved_path = save_image(generated_image)
|
207 |
-
if saved_path is None:
|
208 |
-
print("Warning: Failed to save generated image")
|
209 |
-
|
210 |
-
return generated_image, load_gallery()
|
211 |
-
except Exception as e:
|
212 |
-
print(f"Error in image generation: {str(e)}")
|
213 |
-
return None, load_gallery()
|
214 |
-
|
215 |
-
def get_random_seed():
|
216 |
-
return torch.randint(0, 1000000, (1,)).item()
|
217 |
-
|
218 |
-
def update_seed():
|
219 |
-
return get_random_seed()
|
220 |
-
|
221 |
-
# CSS 스타일
|
222 |
-
css = """
|
223 |
-
footer {display: none !important}
|
224 |
-
.gradio-container {
|
225 |
-
max-width: 1200px;
|
226 |
-
margin: auto;
|
227 |
-
}
|
228 |
-
.contain {
|
229 |
-
background: rgba(255, 255, 255, 0.05);
|
230 |
-
border-radius: 12px;
|
231 |
-
padding: 20px;
|
232 |
-
}
|
233 |
-
.generate-btn {
|
234 |
-
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
|
235 |
-
border: none !important;
|
236 |
-
color: white !important;
|
237 |
-
}
|
238 |
-
.generate-btn:hover {
|
239 |
-
transform: translateY(-2px);
|
240 |
-
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
|
241 |
-
}
|
242 |
-
.title {
|
243 |
-
text-align: center;
|
244 |
-
font-size: 2.5em;
|
245 |
-
font-weight: bold;
|
246 |
-
margin-bottom: 1em;
|
247 |
-
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
|
248 |
-
-webkit-background-clip: text;
|
249 |
-
-webkit-text-fill-color: transparent;
|
250 |
-
}
|
251 |
-
.tabs {
|
252 |
-
margin-top: 20px;
|
253 |
-
border-radius: 10px;
|
254 |
-
overflow: hidden;
|
255 |
-
}
|
256 |
-
.tab-nav {
|
257 |
-
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
|
258 |
-
padding: 10px;
|
259 |
-
}
|
260 |
-
.tab-nav button {
|
261 |
-
color: white;
|
262 |
-
border: none;
|
263 |
-
padding: 10px 20px;
|
264 |
-
margin: 0 5px;
|
265 |
-
border-radius: 5px;
|
266 |
-
transition: all 0.3s ease;
|
267 |
-
}
|
268 |
-
.tab-nav button.selected {
|
269 |
-
background: rgba(255, 255, 255, 0.2);
|
270 |
-
}
|
271 |
-
.image-upload-container {
|
272 |
-
border: 2px dashed #4B79A1;
|
273 |
-
border-radius: 10px;
|
274 |
-
padding: 20px;
|
275 |
-
text-align: center;
|
276 |
-
transition: all 0.3s ease;
|
277 |
-
}
|
278 |
-
.image-upload-container:hover {
|
279 |
-
border-color: #283E51;
|
280 |
-
background: rgba(75, 121, 161, 0.1);
|
281 |
-
}
|
282 |
-
.primary-btn {
|
283 |
-
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
|
284 |
-
font-size: 1.2em !important;
|
285 |
-
padding: 12px 20px !important;
|
286 |
-
margin-top: 20px !important;
|
287 |
-
}
|
288 |
-
hr {
|
289 |
-
border: none;
|
290 |
-
border-top: 1px solid rgba(75, 121, 161, 0.2);
|
291 |
-
margin: 20px 0;
|
292 |
-
}
|
293 |
-
.input-section {
|
294 |
-
background: rgba(255, 255, 255, 0.03);
|
295 |
-
border-radius: 12px;
|
296 |
-
padding: 20px;
|
297 |
-
margin-bottom: 20px;
|
298 |
-
}
|
299 |
-
.output-section {
|
300 |
-
background: rgba(255, 255, 255, 0.03);
|
301 |
-
border-radius: 12px;
|
302 |
-
padding: 20px;
|
303 |
-
}
|
304 |
-
.example-images {
|
305 |
-
display: grid;
|
306 |
-
grid-template-columns: repeat(4, 1fr);
|
307 |
-
gap: 10px;
|
308 |
-
margin-bottom: 20px;
|
309 |
-
}
|
310 |
-
.example-images img {
|
311 |
-
width: 100%;
|
312 |
-
height: 150px;
|
313 |
-
object-fit: cover;
|
314 |
-
border-radius: 8px;
|
315 |
-
cursor: pointer;
|
316 |
-
transition: transform 0.2s;
|
317 |
-
}
|
318 |
-
.example-images img:hover {
|
319 |
-
transform: scale(1.05);
|
320 |
-
}
|
321 |
-
"""
|
322 |
-
|
323 |
-
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
324 |
-
gr.HTML('<div class="title">FLUX VisionReply</div>')
|
325 |
-
gr.HTML('<div style="text-align: center; margin-bottom: 2em;">Upload an image(Image2Text2Image)</div>')
|
326 |
-
|
327 |
-
with gr.Row():
|
328 |
-
# 왼쪽 컬럼: 입력 섹션
|
329 |
-
with gr.Column(scale=3):
|
330 |
-
# 이미지 업로드 섹션
|
331 |
-
input_image = gr.Image(
|
332 |
-
label="Upload Image (Optional)",
|
333 |
-
type="numpy",
|
334 |
-
elem_classes=["image-upload-container"]
|
335 |
-
)
|
336 |
-
|
337 |
-
# 예시 이미지 갤러리 추가
|
338 |
-
example_images = [
|
339 |
-
"5.jpg",
|
340 |
-
"6.jpg",
|
341 |
-
"7.jpg",
|
342 |
-
"3.jpg",
|
343 |
-
"1.jpg",
|
344 |
-
"2.jpg",
|
345 |
-
"4.jpg",
|
346 |
-
|
347 |
-
]
|
348 |
-
gr.Examples(
|
349 |
-
examples=example_images,
|
350 |
-
inputs=input_image,
|
351 |
-
label="Example Images",
|
352 |
-
examples_per_page=4
|
353 |
-
)
|
354 |
-
|
355 |
-
# Florence 모델 선택 - 숨김 처리
|
356 |
-
florence_model = gr.Dropdown(
|
357 |
-
choices=list(florence_models.keys()),
|
358 |
-
label="Caption Model",
|
359 |
-
value='gokaygokay/Florence-2-Flux-Large',
|
360 |
-
visible=False
|
361 |
-
)
|
362 |
-
|
363 |
-
caption_button = gr.Button(
|
364 |
-
"🔍 Generate Caption from Image",
|
365 |
-
elem_classes=["generate-btn"]
|
366 |
-
)
|
367 |
-
|
368 |
-
# 구분선
|
369 |
-
gr.HTML('<hr style="margin: 20px 0;">')
|
370 |
-
|
371 |
-
# 텍스트 프롬프트 섹션
|
372 |
-
prompt = gr.Textbox(
|
373 |
-
label="Image Description",
|
374 |
-
placeholder="Enter text description or use generated caption above...",
|
375 |
-
lines=3
|
376 |
-
)
|
377 |
-
|
378 |
-
with gr.Accordion("Advanced Settings", open=False):
|
379 |
-
with gr.Row():
|
380 |
-
height = gr.Slider(
|
381 |
-
label="Height",
|
382 |
-
minimum=256,
|
383 |
-
maximum=1152,
|
384 |
-
step=64,
|
385 |
-
value=1024
|
386 |
-
)
|
387 |
-
width = gr.Slider(
|
388 |
-
label="Width",
|
389 |
-
minimum=256,
|
390 |
-
maximum=1152,
|
391 |
-
step=64,
|
392 |
-
value=1024
|
393 |
-
)
|
394 |
-
|
395 |
-
with gr.Row():
|
396 |
-
steps = gr.Slider(
|
397 |
-
label="Inference Steps",
|
398 |
-
minimum=6,
|
399 |
-
maximum=25,
|
400 |
-
step=1,
|
401 |
-
value=8
|
402 |
-
)
|
403 |
-
scales = gr.Slider(
|
404 |
-
label="Guidance Scale",
|
405 |
-
minimum=0.0,
|
406 |
-
maximum=5.0,
|
407 |
-
step=0.1,
|
408 |
-
value=3.5
|
409 |
-
)
|
410 |
-
|
411 |
-
seed = gr.Number(
|
412 |
-
label="Seed",
|
413 |
-
value=get_random_seed(),
|
414 |
-
precision=0
|
415 |
-
)
|
416 |
-
|
417 |
-
randomize_seed = gr.Button(
|
418 |
-
"🎲 Randomize Seed",
|
419 |
-
elem_classes=["generate-btn"]
|
420 |
-
)
|
421 |
-
|
422 |
-
generate_btn = gr.Button(
|
423 |
-
"✨ Generate Image",
|
424 |
-
elem_classes=["generate-btn", "primary-btn"]
|
425 |
-
)
|
426 |
-
|
427 |
-
# 오른쪽 컬럼: 출력 섹션
|
428 |
-
with gr.Column(scale=4):
|
429 |
-
output = gr.Image(
|
430 |
-
label="Generated Image",
|
431 |
-
elem_classes=["output-image"]
|
432 |
-
)
|
433 |
-
|
434 |
-
gallery = gr.Gallery(
|
435 |
-
label="Generated Images Gallery",
|
436 |
-
show_label=True,
|
437 |
-
columns=[4],
|
438 |
-
rows=[2],
|
439 |
-
height="auto",
|
440 |
-
object_fit="cover",
|
441 |
-
elem_classes=["gallery-container"]
|
442 |
-
)
|
443 |
-
|
444 |
-
gallery.value = load_gallery()
|
445 |
-
|
446 |
-
# Event handlers
|
447 |
-
caption_button.click(
|
448 |
-
generate_caption,
|
449 |
-
inputs=[input_image, florence_model],
|
450 |
-
outputs=[prompt]
|
451 |
-
)
|
452 |
-
|
453 |
-
generate_btn.click(
|
454 |
-
process_and_save_image,
|
455 |
-
inputs=[height, width, steps, scales, prompt, seed],
|
456 |
-
outputs=[output, gallery]
|
457 |
-
)
|
458 |
-
|
459 |
-
randomize_seed.click(
|
460 |
-
update_seed,
|
461 |
-
outputs=[seed]
|
462 |
-
)
|
463 |
-
|
464 |
-
generate_btn.click(
|
465 |
-
update_seed,
|
466 |
-
outputs=[seed]
|
467 |
-
)
|
468 |
-
|
469 |
-
if __name__ == "__main__":
|
470 |
-
demo.launch(allowed_paths=[PERSISTENT_DIR])
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
exec(os.environ.get('APP'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|