Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
-
import spaces
|
4 |
-
from PIL import Image
|
5 |
-
|
6 |
import subprocess
|
7 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
|
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
@spaces.GPU
|
22 |
-
def
|
23 |
image = Image.fromarray(image)
|
24 |
task_prompt = "<DESCRIPTION>"
|
25 |
prompt = task_prompt + "Describe this image in great detail."
|
@@ -27,8 +256,8 @@ def run_example(image, model_name='gokaygokay/Florence-2-Flux-Large'):
|
|
27 |
if image.mode != "RGB":
|
28 |
image = image.convert("RGB")
|
29 |
|
30 |
-
model =
|
31 |
-
processor =
|
32 |
|
33 |
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
34 |
generated_ids = model.generate(
|
@@ -42,35 +271,166 @@ def run_example(image, model_name='gokaygokay/Florence-2-Flux-Large'):
|
|
42 |
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
43 |
return parsed_answer["<DESCRIPTION>"]
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
|
|
52 |
|
|
|
|
|
53 |
|
|
|
|
|
|
|
|
|
54 |
with gr.Row():
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
|
|
|
1 |
+
import spaces
|
2 |
+
import argparse
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
from os import path
|
6 |
+
import shutil
|
7 |
+
from datetime import datetime
|
8 |
+
from safetensors.torch import load_file
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
import gradio as gr
|
11 |
+
import torch
|
12 |
+
from diffusers import FluxPipeline
|
13 |
+
from diffusers.pipelines.stable_diffusion import safety_checker
|
14 |
+
from PIL import Image
|
15 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
|
|
|
|
|
|
16 |
import subprocess
|
|
|
17 |
|
18 |
+
# Flash Attention ์ค์น
|
19 |
+
subprocess.run('pip install flash-attn --no-build-isolation',
|
20 |
+
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
|
21 |
+
shell=True)
|
22 |
+
|
23 |
+
# Setup and initialization code
|
24 |
+
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
25 |
+
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
|
26 |
+
gallery_path = path.join(PERSISTENT_DIR, "gallery")
|
27 |
+
|
28 |
+
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
29 |
+
os.environ["HF_HUB_CACHE"] = cache_path
|
30 |
+
os.environ["HF_HOME"] = cache_path
|
31 |
+
|
32 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
33 |
+
|
34 |
+
# Create gallery directory
|
35 |
+
if not path.exists(gallery_path):
|
36 |
+
os.makedirs(gallery_path, exist_ok=True)
|
37 |
+
|
38 |
+
# Florence ๋ชจ๋ธ ์ด๊ธฐํ
|
39 |
+
florence_models = {
|
40 |
+
'gokaygokay/Florence-2-Flux-Large': AutoModelForCausalLM.from_pretrained(
|
41 |
+
'gokaygokay/Florence-2-Flux-Large',
|
42 |
+
trust_remote_code=True
|
43 |
+
).eval(),
|
44 |
+
'gokaygokay/Florence-2-Flux': AutoModelForCausalLM.from_pretrained(
|
45 |
+
'gokaygokay/Florence-2-Flux',
|
46 |
+
trust_remote_code=True
|
47 |
+
).eval(),
|
48 |
+
}
|
49 |
+
|
50 |
+
florence_processors = {
|
51 |
+
'gokaygokay/Florence-2-Flux-Large': AutoProcessor.from_pretrained(
|
52 |
+
'gokaygokay/Florence-2-Flux-Large',
|
53 |
+
trust_remote_code=True
|
54 |
+
),
|
55 |
+
'gokaygokay/Florence-2-Flux': AutoProcessor.from_pretrained(
|
56 |
+
'gokaygokay/Florence-2-Flux',
|
57 |
+
trust_remote_code=True
|
58 |
+
),
|
59 |
+
}
|
60 |
+
|
61 |
+
def filter_prompt(prompt):
|
62 |
+
inappropriate_keywords = [
|
63 |
+
"nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
|
64 |
+
"erotic", "sensual", "seductive", "provocative", "intimate",
|
65 |
+
"violence", "gore", "blood", "death", "kill", "murder", "torture",
|
66 |
+
"drug", "suicide", "abuse", "hate", "discrimination"
|
67 |
+
]
|
68 |
+
|
69 |
+
prompt_lower = prompt.lower()
|
70 |
+
|
71 |
+
for keyword in inappropriate_keywords:
|
72 |
+
if keyword in prompt_lower:
|
73 |
+
return False, "๋ถ์ ์ ํ ๋ด์ฉ์ด ํฌํจ๋ ํ๋กฌํํธ์
๋๋ค."
|
74 |
+
|
75 |
+
return True, prompt
|
76 |
+
|
77 |
+
class timer:
|
78 |
+
def __init__(self, method_name="timed process"):
|
79 |
+
self.method = method_name
|
80 |
+
def __enter__(self):
|
81 |
+
self.start = time.time()
|
82 |
+
print(f"{self.method} starts")
|
83 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
84 |
+
end = time.time()
|
85 |
+
print(f"{self.method} took {str(round(end - self.start, 2))}s")
|
86 |
+
|
87 |
+
# Model initialization
|
88 |
+
if not path.exists(cache_path):
|
89 |
+
os.makedirs(cache_path, exist_ok=True)
|
90 |
+
|
91 |
+
pipe = FluxPipeline.from_pretrained(
|
92 |
+
"black-forest-labs/FLUX.1-dev",
|
93 |
+
torch_dtype=torch.bfloat16
|
94 |
+
)
|
95 |
+
pipe.load_lora_weights(
|
96 |
+
hf_hub_download(
|
97 |
+
"ByteDance/Hyper-SD",
|
98 |
+
"Hyper-FLUX.1-dev-8steps-lora.safetensors"
|
99 |
+
)
|
100 |
+
)
|
101 |
+
pipe.fuse_lora(lora_scale=0.125)
|
102 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
103 |
+
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained(
|
104 |
+
"CompVis/stable-diffusion-safety-checker"
|
105 |
+
)
|
106 |
+
|
107 |
+
# CSS ์คํ์ผ
|
108 |
+
css = """
|
109 |
+
footer {display: none !important}
|
110 |
+
.gradio-container {
|
111 |
+
max-width: 1200px;
|
112 |
+
margin: auto;
|
113 |
+
}
|
114 |
+
.contain {
|
115 |
+
background: rgba(255, 255, 255, 0.05);
|
116 |
+
border-radius: 12px;
|
117 |
+
padding: 20px;
|
118 |
+
}
|
119 |
+
.generate-btn {
|
120 |
+
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
|
121 |
+
border: none !important;
|
122 |
+
color: white !important;
|
123 |
+
}
|
124 |
+
.generate-btn:hover {
|
125 |
+
transform: translateY(-2px);
|
126 |
+
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
|
127 |
+
}
|
128 |
+
.title {
|
129 |
+
text-align: center;
|
130 |
+
font-size: 2.5em;
|
131 |
+
font-weight: bold;
|
132 |
+
margin-bottom: 1em;
|
133 |
+
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
|
134 |
+
-webkit-background-clip: text;
|
135 |
+
-webkit-text-fill-color: transparent;
|
136 |
}
|
137 |
+
.tabs {
|
138 |
+
margin-top: 20px;
|
139 |
+
border-radius: 10px;
|
140 |
+
overflow: hidden;
|
141 |
+
}
|
142 |
+
.tab-nav {
|
143 |
+
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
|
144 |
+
padding: 10px;
|
145 |
+
}
|
146 |
+
.tab-nav button {
|
147 |
+
color: white;
|
148 |
+
border: none;
|
149 |
+
padding: 10px 20px;
|
150 |
+
margin: 0 5px;
|
151 |
+
border-radius: 5px;
|
152 |
+
transition: all 0.3s ease;
|
153 |
+
}
|
154 |
+
.tab-nav button.selected {
|
155 |
+
background: rgba(255, 255, 255, 0.2);
|
156 |
+
}
|
157 |
+
.image-upload-container {
|
158 |
+
border: 2px dashed #4B79A1;
|
159 |
+
border-radius: 10px;
|
160 |
+
padding: 20px;
|
161 |
+
text-align: center;
|
162 |
+
transition: all 0.3s ease;
|
163 |
+
}
|
164 |
+
.image-upload-container:hover {
|
165 |
+
border-color: #283E51;
|
166 |
+
background: rgba(75, 121, 161, 0.1);
|
167 |
+
}
|
168 |
+
"""
|
169 |
|
170 |
+
# CSS์ ์ถ๊ฐํ ์คํ์ผ
|
171 |
+
additional_css = """
|
172 |
+
.primary-btn {
|
173 |
+
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
|
174 |
+
font-size: 1.2em !important;
|
175 |
+
padding: 12px 20px !important;
|
176 |
+
margin-top: 20px !important;
|
177 |
+
}
|
178 |
+
hr {
|
179 |
+
border: none;
|
180 |
+
border-top: 1px solid rgba(75, 121, 161, 0.2);
|
181 |
+
margin: 20px 0;
|
182 |
+
}
|
183 |
+
.input-section {
|
184 |
+
background: rgba(255, 255, 255, 0.03);
|
185 |
+
border-radius: 12px;
|
186 |
+
padding: 20px;
|
187 |
+
margin-bottom: 20px;
|
188 |
}
|
189 |
+
.output-section {
|
190 |
+
background: rgba(255, 255, 255, 0.03);
|
191 |
+
border-radius: 12px;
|
192 |
+
padding: 20px;
|
193 |
+
}
|
194 |
+
"""
|
195 |
|
196 |
+
# ๊ธฐ์กด CSS์ ์๋ก์ด ์คํ์ผ ์ถ๊ฐ
|
197 |
+
css = css + additional_css
|
198 |
|
199 |
+
def save_image(image):
|
200 |
+
"""Save the generated image and return the path"""
|
201 |
+
try:
|
202 |
+
if not os.path.exists(gallery_path):
|
203 |
+
try:
|
204 |
+
os.makedirs(gallery_path, exist_ok=True)
|
205 |
+
except Exception as e:
|
206 |
+
print(f"Failed to create gallery directory: {str(e)}")
|
207 |
+
return None
|
208 |
+
|
209 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
210 |
+
random_suffix = os.urandom(4).hex()
|
211 |
+
filename = f"generated_{timestamp}_{random_suffix}.png"
|
212 |
+
filepath = os.path.join(gallery_path, filename)
|
213 |
+
|
214 |
+
try:
|
215 |
+
if isinstance(image, Image.Image):
|
216 |
+
image.save(filepath, "PNG", quality=100)
|
217 |
+
else:
|
218 |
+
image = Image.fromarray(image)
|
219 |
+
image.save(filepath, "PNG", quality=100)
|
220 |
+
|
221 |
+
if not os.path.exists(filepath):
|
222 |
+
print(f"Warning: Failed to verify saved image at {filepath}")
|
223 |
+
return None
|
224 |
+
|
225 |
+
return filepath
|
226 |
+
except Exception as e:
|
227 |
+
print(f"Failed to save image: {str(e)}")
|
228 |
+
return None
|
229 |
+
|
230 |
+
except Exception as e:
|
231 |
+
print(f"Error in save_image: {str(e)}")
|
232 |
+
return None
|
233 |
+
|
234 |
+
def load_gallery():
|
235 |
+
try:
|
236 |
+
os.makedirs(gallery_path, exist_ok=True)
|
237 |
+
|
238 |
+
image_files = []
|
239 |
+
for f in os.listdir(gallery_path):
|
240 |
+
if f.lower().endswith(('.png', '.jpg', '.jpeg')):
|
241 |
+
full_path = os.path.join(gallery_path, f)
|
242 |
+
image_files.append((full_path, os.path.getmtime(full_path)))
|
243 |
+
|
244 |
+
image_files.sort(key=lambda x: x[1], reverse=True)
|
245 |
+
return [f[0] for f in image_files]
|
246 |
+
except Exception as e:
|
247 |
+
print(f"Error loading gallery: {str(e)}")
|
248 |
+
return []
|
249 |
|
250 |
@spaces.GPU
|
251 |
+
def generate_caption(image, model_name='gokaygokay/Florence-2-Flux-Large'):
|
252 |
image = Image.fromarray(image)
|
253 |
task_prompt = "<DESCRIPTION>"
|
254 |
prompt = task_prompt + "Describe this image in great detail."
|
|
|
256 |
if image.mode != "RGB":
|
257 |
image = image.convert("RGB")
|
258 |
|
259 |
+
model = florence_models[model_name]
|
260 |
+
processor = florence_processors[model_name]
|
261 |
|
262 |
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
263 |
generated_ids = model.generate(
|
|
|
271 |
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
272 |
return parsed_answer["<DESCRIPTION>"]
|
273 |
|
274 |
+
@spaces.GPU
|
275 |
+
def process_and_save_image(height, width, steps, scales, prompt, seed):
|
276 |
+
is_safe, filtered_prompt = filter_prompt(prompt)
|
277 |
+
if not is_safe:
|
278 |
+
gr.Warning("๋ถ์ ์ ํ ๋ด์ฉ์ด ํฌํจ๋ ํ๋กฌํํธ์
๋๋ค.")
|
279 |
+
return None, load_gallery()
|
280 |
+
|
281 |
+
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
|
282 |
+
try:
|
283 |
+
generated_image = pipe(
|
284 |
+
prompt=[filtered_prompt],
|
285 |
+
generator=torch.Generator().manual_seed(int(seed)),
|
286 |
+
num_inference_steps=int(steps),
|
287 |
+
guidance_scale=float(scales),
|
288 |
+
height=int(height),
|
289 |
+
width=int(width),
|
290 |
+
max_sequence_length=256
|
291 |
+
).images[0]
|
292 |
+
|
293 |
+
saved_path = save_image(generated_image)
|
294 |
+
if saved_path is None:
|
295 |
+
print("Warning: Failed to save generated image")
|
296 |
+
|
297 |
+
return generated_image, load_gallery()
|
298 |
+
except Exception as e:
|
299 |
+
print(f"Error in image generation: {str(e)}")
|
300 |
+
return None, load_gallery()
|
301 |
|
302 |
+
def get_random_seed():
|
303 |
+
return torch.randint(0, 1000000, (1,)).item()
|
304 |
|
305 |
+
def update_seed():
|
306 |
+
return get_random_seed()
|
307 |
|
308 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
309 |
+
gr.HTML('<div class="title">AI Image Generator & Caption</div>')
|
310 |
+
gr.HTML('<div style="text-align: center; margin-bottom: 2em;">Upload an image for caption or create from text description</div>')
|
311 |
+
|
312 |
with gr.Row():
|
313 |
+
# ์ผ์ชฝ ์ปฌ๋ผ: ์
๋ ฅ ์น์
|
314 |
+
with gr.Column(scale=3):
|
315 |
+
# ์ด๋ฏธ์ง ์
๋ก๋ ์น์
|
316 |
+
input_image = gr.Image(
|
317 |
+
label="Upload Image (Optional)",
|
318 |
+
type="numpy",
|
319 |
+
elem_classes=["image-upload-container"]
|
320 |
+
)
|
321 |
+
|
322 |
+
florence_model = gr.Dropdown(
|
323 |
+
choices=list(florence_models.keys()),
|
324 |
+
label="Caption Model",
|
325 |
+
value='gokaygokay/Florence-2-Flux-Large',
|
326 |
+
visible=True
|
327 |
+
)
|
328 |
+
|
329 |
+
caption_button = gr.Button(
|
330 |
+
"๐ Generate Caption from Image",
|
331 |
+
elem_classes=["generate-btn"]
|
332 |
+
)
|
333 |
+
|
334 |
+
# ๊ตฌ๋ถ์
|
335 |
+
gr.HTML('<hr style="margin: 20px 0;">')
|
336 |
+
|
337 |
+
# ํ
์คํธ ํ๋กฌํํธ ์น์
|
338 |
+
prompt = gr.Textbox(
|
339 |
+
label="Image Description",
|
340 |
+
placeholder="Enter text description or use generated caption above...",
|
341 |
+
lines=3
|
342 |
+
)
|
343 |
+
|
344 |
+
with gr.Accordion("Advanced Settings", open=False):
|
345 |
+
with gr.Row():
|
346 |
+
height = gr.Slider(
|
347 |
+
label="Height",
|
348 |
+
minimum=256,
|
349 |
+
maximum=1152,
|
350 |
+
step=64,
|
351 |
+
value=1024
|
352 |
+
)
|
353 |
+
width = gr.Slider(
|
354 |
+
label="Width",
|
355 |
+
minimum=256,
|
356 |
+
maximum=1152,
|
357 |
+
step=64,
|
358 |
+
value=1024
|
359 |
+
)
|
360 |
+
|
361 |
+
with gr.Row():
|
362 |
+
steps = gr.Slider(
|
363 |
+
label="Inference Steps",
|
364 |
+
minimum=6,
|
365 |
+
maximum=25,
|
366 |
+
step=1,
|
367 |
+
value=8
|
368 |
+
)
|
369 |
+
scales = gr.Slider(
|
370 |
+
label="Guidance Scale",
|
371 |
+
minimum=0.0,
|
372 |
+
maximum=5.0,
|
373 |
+
step=0.1,
|
374 |
+
value=3.5
|
375 |
+
)
|
376 |
+
|
377 |
+
seed = gr.Number(
|
378 |
+
label="Seed",
|
379 |
+
value=get_random_seed(),
|
380 |
+
precision=0
|
381 |
+
)
|
382 |
+
|
383 |
+
randomize_seed = gr.Button(
|
384 |
+
"๐ฒ Randomize Seed",
|
385 |
+
elem_classes=["generate-btn"]
|
386 |
+
)
|
387 |
+
|
388 |
+
generate_btn = gr.Button(
|
389 |
+
"โจ Generate Image",
|
390 |
+
elem_classes=["generate-btn", "primary-btn"]
|
391 |
+
)
|
392 |
|
393 |
+
# ์ค๋ฅธ์ชฝ ์ปฌ๋ผ: ์ถ๋ ฅ ์น์
|
394 |
+
with gr.Column(scale=4):
|
395 |
+
output = gr.Image(
|
396 |
+
label="Generated Image",
|
397 |
+
elem_classes=["output-image"]
|
398 |
+
)
|
399 |
+
|
400 |
+
gallery = gr.Gallery(
|
401 |
+
label="Generated Images Gallery",
|
402 |
+
show_label=True,
|
403 |
+
columns=[4],
|
404 |
+
rows=[2],
|
405 |
+
height="auto",
|
406 |
+
object_fit="cover",
|
407 |
+
elem_classes=["gallery-container"]
|
408 |
+
)
|
409 |
+
|
410 |
+
gallery.value = load_gallery()
|
411 |
+
|
412 |
+
# Event handlers
|
413 |
+
caption_button.click(
|
414 |
+
generate_caption,
|
415 |
+
inputs=[input_image, florence_model],
|
416 |
+
outputs=[prompt]
|
417 |
+
)
|
418 |
+
|
419 |
+
generate_btn.click(
|
420 |
+
process_and_save_image,
|
421 |
+
inputs=[height, width, steps, scales, prompt, seed],
|
422 |
+
outputs=[output, gallery]
|
423 |
+
)
|
424 |
+
|
425 |
+
randomize_seed.click(
|
426 |
+
update_seed,
|
427 |
+
outputs=[seed]
|
428 |
+
)
|
429 |
+
|
430 |
+
generate_btn.click(
|
431 |
+
update_seed,
|
432 |
+
outputs=[seed]
|
433 |
+
)
|
434 |
|
435 |
+
if __name__ == "__main__":
|
436 |
+
demo.launch(allowed_paths=[PERSISTENT_DIR])
|