Fashion-FLUX / app.py
aiqcamp's picture
Update app.py
fc48392 verified
raw
history blame
4.72 kB
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
from transformers import pipeline
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
# λ²ˆμ—­ λͺ¨λΈ μ΄ˆκΈ°ν™”
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# κΈ°λ³Έ λͺ¨λΈ 및 LoRA μ„€μ •
base_model = "black-forest-labs/FLUX.1-dev"
model_lora_repo = "Motas/Flux_Fashion_Photography_Style"
clothes_lora_repo = "prithivMLmods/Canopus-Clothing-Flux-LoRA"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
pipe.to("cuda")
MAX_SEED = 2**32-1
# μ˜ˆμ‹œ ν”„λ‘¬ν”„νŠΈ μ •μ˜
model_examples = [
"professional fashion model wearing elegant black dress in studio lighting",
"fashion model in casual street wear, urban background",
"high fashion model in avant-garde outfit on runway"
]
clothes_examples = [
"luxurious red evening gown with detailed embroidery",
"casual denim jacket with vintage wash",
"modern minimalist white blazer with clean lines"
]
@spaces.GPU()
def generate_fashion(prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
if not prompt:
return None, seed
def contains_korean(text):
return any(ord('κ°€') <= ord(char) <= ord('힣') for char in text)
if contains_korean(prompt):
translated = translator(prompt)[0]['translation_text']
actual_prompt = translated
else:
actual_prompt = prompt
if mode == "νŒ¨μ…˜ λͺ¨λΈ 생성":
pipe.load_lora_weights(model_lora_repo)
trigger_word = "fashion photography, professional model"
else:
pipe.load_lora_weights(clothes_lora_repo)
trigger_word = "upper clothing, fashion item"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
image = pipe(
prompt=f"{actual_prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
return image, seed
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as app:
gr.Markdown("# 🎭 Fashion AI Studio")
with gr.Column():
mode = gr.Radio(
choices=["Person", "Clothes"],
label="Generation",
value="Fashion Model"
)
prompt = gr.TextArea(
label="✍️ Prompt (ν•œκΈ€ 지원)",
placeholder="Text Input Prompt",
lines=3
)
# μ˜ˆμ‹œ μ„Ήμ…˜μ„ λͺ¨λ“œλ³„λ‘œ 뢄리
with gr.Column(visible=True) as model_examples_container:
gr.Examples(
examples=model_examples,
inputs=prompt,
label="Examples(person)"
)
with gr.Column(visible=False) as clothes_examples_container:
gr.Examples(
examples=clothes_examples,
inputs=prompt,
label="Examples(clothes)"
)
result = gr.Image(label="Generated Image")
generate_button = gr.Button("πŸš€ START")
with gr.Accordion("🎨 OPTION", open=False):
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7.0)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, value=0.85)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, value=512)
height = gr.Slider(label="Height", minimum=256, maximum=1536, value=768)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="μ‹œλ“œ λžœλ€ν™”")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, value=42)
def update_visibility(mode):
return (
gr.update(visible=(mode == "Person")),
gr.update(visible=(mode == "Clothes"))
)
mode.change(
fn=update_visibility,
inputs=[mode],
outputs=[model_examples_container, clothes_examples_container]
)
generate_button.click(
generate_fashion,
inputs=[prompt, mode, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed]
)
if __name__ == "__main__":
app.launch(share=True)