|
|
|
import pdb |
|
|
|
import librosa |
|
from tqdm import tqdm |
|
import os |
|
import torch |
|
import numpy as np |
|
import soundfile as sf |
|
import torch.nn as nn |
|
|
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
from bs_roformer.bs_roformer import BSRoformer |
|
|
|
class BsRoformer_Loader: |
|
def get_model_from_config(self): |
|
config = { |
|
"attn_dropout": 0.1, |
|
"depth": 12, |
|
"dim": 512, |
|
"dim_freqs_in": 1025, |
|
"dim_head": 64, |
|
"ff_dropout": 0.1, |
|
"flash_attn": True, |
|
"freq_transformer_depth": 1, |
|
"freqs_per_bands":(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 12, 12, 12, 12, 12, 12, 12, 12, 24, 24, 24, 24, 24, 24, 24, 24, 48, 48, 48, 48, 48, 48, 48, 48, 128, 129), |
|
"heads": 8, |
|
"linear_transformer_depth": 0, |
|
"mask_estimator_depth": 2, |
|
"multi_stft_hop_size": 147, |
|
"multi_stft_normalized": False, |
|
"multi_stft_resolution_loss_weight": 1.0, |
|
"multi_stft_resolutions_window_sizes":(4096, 2048, 1024, 512, 256), |
|
"num_stems": 1, |
|
"stereo": True, |
|
"stft_hop_length": 441, |
|
"stft_n_fft": 2048, |
|
"stft_normalized": False, |
|
"stft_win_length": 2048, |
|
"time_transformer_depth": 1, |
|
|
|
} |
|
|
|
|
|
model = BSRoformer( |
|
**dict(config) |
|
) |
|
|
|
return model |
|
|
|
|
|
def demix_track(self, model, mix, device): |
|
C = 352800 |
|
|
|
N = 1 |
|
fade_size = C // 10 |
|
step = int(C // N) |
|
border = C - step |
|
batch_size = 4 |
|
|
|
length_init = mix.shape[-1] |
|
|
|
progress_bar = tqdm(total=length_init // step + 1) |
|
progress_bar.set_description("Processing") |
|
|
|
|
|
if length_init > 2 * border and (border > 0): |
|
mix = nn.functional.pad(mix, (border, border), mode='reflect') |
|
|
|
|
|
window_size = C |
|
fadein = torch.linspace(0, 1, fade_size) |
|
fadeout = torch.linspace(1, 0, fade_size) |
|
window_start = torch.ones(window_size) |
|
window_middle = torch.ones(window_size) |
|
window_finish = torch.ones(window_size) |
|
window_start[-fade_size:] *= fadeout |
|
window_finish[:fade_size] *= fadein |
|
window_middle[-fade_size:] *= fadeout |
|
window_middle[:fade_size] *= fadein |
|
|
|
with torch.amp.autocast('cuda'): |
|
with torch.inference_mode(): |
|
req_shape = (1, ) + tuple(mix.shape) |
|
|
|
result = torch.zeros(req_shape, dtype=torch.float32) |
|
counter = torch.zeros(req_shape, dtype=torch.float32) |
|
i = 0 |
|
batch_data = [] |
|
batch_locations = [] |
|
while i < mix.shape[1]: |
|
part = mix[:, i:i + C].to(device) |
|
length = part.shape[-1] |
|
if length < C: |
|
if length > C // 2 + 1: |
|
part = nn.functional.pad(input=part, pad=(0, C - length), mode='reflect') |
|
else: |
|
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0) |
|
if(self.is_half==True): |
|
part=part.half() |
|
batch_data.append(part) |
|
batch_locations.append((i, length)) |
|
i += step |
|
progress_bar.update(1) |
|
|
|
if len(batch_data) >= batch_size or (i >= mix.shape[1]): |
|
arr = torch.stack(batch_data, dim=0) |
|
|
|
x = model(arr) |
|
|
|
window = window_middle |
|
if i - step == 0: |
|
window = window_start |
|
elif i >= mix.shape[1]: |
|
window = window_finish |
|
|
|
for j in range(len(batch_locations)): |
|
start, l = batch_locations[j] |
|
result[..., start:start+l] += x[j][..., :l].cpu() * window[..., :l] |
|
counter[..., start:start+l] += window[..., :l] |
|
|
|
batch_data = [] |
|
batch_locations = [] |
|
|
|
estimated_sources = result / counter |
|
estimated_sources = estimated_sources.cpu().numpy() |
|
np.nan_to_num(estimated_sources, copy=False, nan=0.0) |
|
|
|
if length_init > 2 * border and (border > 0): |
|
|
|
estimated_sources = estimated_sources[..., border:-border] |
|
|
|
progress_bar.close() |
|
|
|
return {k: v for k, v in zip(['vocals', 'other'], estimated_sources)} |
|
|
|
|
|
def run_folder(self,input, vocal_root, others_root, format): |
|
|
|
self.model.eval() |
|
path = input |
|
|
|
if not os.path.isdir(vocal_root): |
|
os.mkdir(vocal_root) |
|
|
|
if not os.path.isdir(others_root): |
|
os.mkdir(others_root) |
|
|
|
try: |
|
mix, sr = librosa.load(path, sr=44100, mono=False) |
|
except Exception as e: |
|
print('Can read track: {}'.format(path)) |
|
print('Error message: {}'.format(str(e))) |
|
return |
|
|
|
|
|
if len(mix.shape) == 1: |
|
mix = np.stack([mix, mix], axis=0) |
|
|
|
mix_orig = mix.copy() |
|
|
|
mixture = torch.tensor(mix, dtype=torch.float32) |
|
res = self.demix_track(self.model, mixture, self.device) |
|
|
|
estimates = res['vocals'].T |
|
|
|
if format in ["wav", "flac"]: |
|
sf.write("{}/{}_{}.{}".format(vocal_root, os.path.basename(path)[:-4], 'vocals', format), estimates, sr) |
|
sf.write("{}/{}_{}.{}".format(others_root, os.path.basename(path)[:-4], 'instrumental', format), mix_orig.T - estimates, sr) |
|
else: |
|
path_vocal = "%s/%s_vocals.wav" % (vocal_root, os.path.basename(path)[:-4]) |
|
path_other = "%s/%s_instrumental.wav" % (others_root, os.path.basename(path)[:-4]) |
|
sf.write(path_vocal, estimates, sr) |
|
sf.write(path_other, mix_orig.T - estimates, sr) |
|
opt_path_vocal = path_vocal[:-4] + ".%s" % format |
|
opt_path_other = path_other[:-4] + ".%s" % format |
|
if os.path.exists(path_vocal): |
|
os.system( |
|
"ffmpeg -i '%s' -vn '%s' -q:a 2 -y" % (path_vocal, opt_path_vocal) |
|
) |
|
if os.path.exists(opt_path_vocal): |
|
try: |
|
os.remove(path_vocal) |
|
except: |
|
pass |
|
if os.path.exists(path_other): |
|
os.system( |
|
"ffmpeg -i '%s' -vn '%s' -q:a 2 -y" % (path_other, opt_path_other) |
|
) |
|
if os.path.exists(opt_path_other): |
|
try: |
|
os.remove(path_other) |
|
except: |
|
pass |
|
|
|
|
|
|
|
|
|
def __init__(self, model_path, device,is_half): |
|
self.device = device |
|
self.extract_instrumental=True |
|
|
|
model = self.get_model_from_config() |
|
state_dict = torch.load(model_path,map_location="cpu") |
|
model.load_state_dict(state_dict) |
|
self.is_half=is_half |
|
if(is_half==False): |
|
self.model = model.to(device) |
|
else: |
|
self.model = model.half().to(device) |
|
|
|
|
|
def _path_audio_(self, input, others_root, vocal_root, format, is_hp3=False): |
|
self.run_folder(input, vocal_root, others_root, format) |
|
|
|
|