|
from module.models_onnx import SynthesizerTrn, symbols
|
|
from AR.models.t2s_lightning_module_onnx import Text2SemanticLightningModule
|
|
import torch
|
|
import torchaudio
|
|
from torch import nn
|
|
from feature_extractor import cnhubert
|
|
cnhubert_base_path = "pretrained_models/chinese-hubert-base"
|
|
cnhubert.cnhubert_base_path=cnhubert_base_path
|
|
ssl_model = cnhubert.get_model()
|
|
from text import cleaned_text_to_sequence
|
|
import soundfile
|
|
from tools.my_utils import load_audio
|
|
import os
|
|
import json
|
|
|
|
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
|
hann_window = torch.hann_window(win_size).to(
|
|
dtype=y.dtype, device=y.device
|
|
)
|
|
y = torch.nn.functional.pad(
|
|
y.unsqueeze(1),
|
|
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
|
mode="reflect",
|
|
)
|
|
y = y.squeeze(1)
|
|
spec = torch.stft(
|
|
y,
|
|
n_fft,
|
|
hop_length=hop_size,
|
|
win_length=win_size,
|
|
window=hann_window,
|
|
center=center,
|
|
pad_mode="reflect",
|
|
normalized=False,
|
|
onesided=True,
|
|
return_complex=False,
|
|
)
|
|
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
|
return spec
|
|
|
|
|
|
class DictToAttrRecursive(dict):
|
|
def __init__(self, input_dict):
|
|
super().__init__(input_dict)
|
|
for key, value in input_dict.items():
|
|
if isinstance(value, dict):
|
|
value = DictToAttrRecursive(value)
|
|
self[key] = value
|
|
setattr(self, key, value)
|
|
|
|
def __getattr__(self, item):
|
|
try:
|
|
return self[item]
|
|
except KeyError:
|
|
raise AttributeError(f"Attribute {item} not found")
|
|
|
|
def __setattr__(self, key, value):
|
|
if isinstance(value, dict):
|
|
value = DictToAttrRecursive(value)
|
|
super(DictToAttrRecursive, self).__setitem__(key, value)
|
|
super().__setattr__(key, value)
|
|
|
|
def __delattr__(self, item):
|
|
try:
|
|
del self[item]
|
|
except KeyError:
|
|
raise AttributeError(f"Attribute {item} not found")
|
|
|
|
|
|
class T2SEncoder(nn.Module):
|
|
def __init__(self, t2s, vits):
|
|
super().__init__()
|
|
self.encoder = t2s.onnx_encoder
|
|
self.vits = vits
|
|
|
|
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content):
|
|
codes = self.vits.extract_latent(ssl_content)
|
|
prompt_semantic = codes[0, 0]
|
|
bert = torch.cat([ref_bert.transpose(0, 1), text_bert.transpose(0, 1)], 1)
|
|
all_phoneme_ids = torch.cat([ref_seq, text_seq], 1)
|
|
bert = bert.unsqueeze(0)
|
|
prompt = prompt_semantic.unsqueeze(0)
|
|
return self.encoder(all_phoneme_ids, bert), prompt
|
|
|
|
|
|
class T2SModel(nn.Module):
|
|
def __init__(self, t2s_path, vits_model):
|
|
super().__init__()
|
|
dict_s1 = torch.load(t2s_path, map_location="cpu")
|
|
self.config = dict_s1["config"]
|
|
self.t2s_model = Text2SemanticLightningModule(self.config, "ojbk", is_train=False)
|
|
self.t2s_model.load_state_dict(dict_s1["weight"])
|
|
self.t2s_model.eval()
|
|
self.vits_model = vits_model.vq_model
|
|
self.hz = 50
|
|
self.max_sec = self.config["data"]["max_sec"]
|
|
self.t2s_model.model.top_k = torch.LongTensor([self.config["inference"]["top_k"]])
|
|
self.t2s_model.model.early_stop_num = torch.LongTensor([self.hz * self.max_sec])
|
|
self.t2s_model = self.t2s_model.model
|
|
self.t2s_model.init_onnx()
|
|
self.onnx_encoder = T2SEncoder(self.t2s_model, self.vits_model)
|
|
self.first_stage_decoder = self.t2s_model.first_stage_decoder
|
|
self.stage_decoder = self.t2s_model.stage_decoder
|
|
|
|
|
|
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content):
|
|
early_stop_num = self.t2s_model.early_stop_num
|
|
|
|
|
|
x, prompts = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
|
|
|
|
prefix_len = prompts.shape[1]
|
|
|
|
|
|
y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
|
|
|
|
stop = False
|
|
for idx in range(1, 1500):
|
|
|
|
enco = self.stage_decoder(y, k, v, y_emb, x_example)
|
|
y, k, v, y_emb, logits, samples = enco
|
|
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
|
stop = True
|
|
if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS:
|
|
stop = True
|
|
if stop:
|
|
break
|
|
y[0, -1] = 0
|
|
|
|
return y[:, -idx:].unsqueeze(0)
|
|
|
|
def export(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name, dynamo=False):
|
|
|
|
if dynamo:
|
|
export_options = torch.onnx.ExportOptions(dynamic_shapes=True)
|
|
onnx_encoder_export_output = torch.onnx.dynamo_export(
|
|
self.onnx_encoder,
|
|
(ref_seq, text_seq, ref_bert, text_bert, ssl_content),
|
|
export_options=export_options
|
|
)
|
|
onnx_encoder_export_output.save(f"onnx/{project_name}/{project_name}_t2s_encoder.onnx")
|
|
return
|
|
|
|
torch.onnx.export(
|
|
self.onnx_encoder,
|
|
(ref_seq, text_seq, ref_bert, text_bert, ssl_content),
|
|
f"onnx/{project_name}/{project_name}_t2s_encoder.onnx",
|
|
input_names=["ref_seq", "text_seq", "ref_bert", "text_bert", "ssl_content"],
|
|
output_names=["x", "prompts"],
|
|
dynamic_axes={
|
|
"ref_seq": {1 : "ref_length"},
|
|
"text_seq": {1 : "text_length"},
|
|
"ref_bert": {0 : "ref_length"},
|
|
"text_bert": {0 : "text_length"},
|
|
"ssl_content": {2 : "ssl_length"},
|
|
},
|
|
opset_version=16
|
|
)
|
|
x, prompts = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
|
|
|
|
torch.onnx.export(
|
|
self.first_stage_decoder,
|
|
(x, prompts),
|
|
f"onnx/{project_name}/{project_name}_t2s_fsdec.onnx",
|
|
input_names=["x", "prompts"],
|
|
output_names=["y", "k", "v", "y_emb", "x_example"],
|
|
dynamic_axes={
|
|
"x": {1 : "x_length"},
|
|
"prompts": {1 : "prompts_length"},
|
|
},
|
|
verbose=False,
|
|
opset_version=16
|
|
)
|
|
y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
|
|
|
|
torch.onnx.export(
|
|
self.stage_decoder,
|
|
(y, k, v, y_emb, x_example),
|
|
f"onnx/{project_name}/{project_name}_t2s_sdec.onnx",
|
|
input_names=["iy", "ik", "iv", "iy_emb", "ix_example"],
|
|
output_names=["y", "k", "v", "y_emb", "logits", "samples"],
|
|
dynamic_axes={
|
|
"iy": {1 : "iy_length"},
|
|
"ik": {1 : "ik_length"},
|
|
"iv": {1 : "iv_length"},
|
|
"iy_emb": {1 : "iy_emb_length"},
|
|
"ix_example": {1 : "ix_example_length"},
|
|
},
|
|
verbose=False,
|
|
opset_version=16
|
|
)
|
|
|
|
|
|
class VitsModel(nn.Module):
|
|
def __init__(self, vits_path):
|
|
super().__init__()
|
|
dict_s2 = torch.load(vits_path,map_location="cpu")
|
|
self.hps = dict_s2["config"]
|
|
self.hps = DictToAttrRecursive(self.hps)
|
|
self.hps.model.semantic_frame_rate = "25hz"
|
|
self.vq_model = SynthesizerTrn(
|
|
self.hps.data.filter_length // 2 + 1,
|
|
self.hps.train.segment_size // self.hps.data.hop_length,
|
|
n_speakers=self.hps.data.n_speakers,
|
|
**self.hps.model
|
|
)
|
|
self.vq_model.eval()
|
|
self.vq_model.load_state_dict(dict_s2["weight"], strict=False)
|
|
|
|
def forward(self, text_seq, pred_semantic, ref_audio):
|
|
refer = spectrogram_torch(
|
|
ref_audio,
|
|
self.hps.data.filter_length,
|
|
self.hps.data.sampling_rate,
|
|
self.hps.data.hop_length,
|
|
self.hps.data.win_length,
|
|
center=False
|
|
)
|
|
return self.vq_model(pred_semantic, text_seq, refer)[0, 0]
|
|
|
|
|
|
class GptSoVits(nn.Module):
|
|
def __init__(self, vits, t2s):
|
|
super().__init__()
|
|
self.vits = vits
|
|
self.t2s = t2s
|
|
|
|
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, debug=False):
|
|
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
|
|
audio = self.vits(text_seq, pred_semantic, ref_audio)
|
|
if debug:
|
|
import onnxruntime
|
|
sess = onnxruntime.InferenceSession("onnx/koharu/koharu_vits.onnx", providers=["CPU"])
|
|
audio1 = sess.run(None, {
|
|
"text_seq" : text_seq.detach().cpu().numpy(),
|
|
"pred_semantic" : pred_semantic.detach().cpu().numpy(),
|
|
"ref_audio" : ref_audio.detach().cpu().numpy()
|
|
})
|
|
return audio, audio1
|
|
return audio
|
|
|
|
def export(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, project_name):
|
|
self.t2s.export(ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name)
|
|
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
|
|
torch.onnx.export(
|
|
self.vits,
|
|
(text_seq, pred_semantic, ref_audio),
|
|
f"onnx/{project_name}/{project_name}_vits.onnx",
|
|
input_names=["text_seq", "pred_semantic", "ref_audio"],
|
|
output_names=["audio"],
|
|
dynamic_axes={
|
|
"text_seq": {1 : "text_length"},
|
|
"pred_semantic": {2 : "pred_length"},
|
|
"ref_audio": {1 : "audio_length"},
|
|
},
|
|
opset_version=17,
|
|
verbose=False
|
|
)
|
|
|
|
|
|
class SSLModel(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.ssl = ssl_model
|
|
|
|
def forward(self, ref_audio_16k):
|
|
return self.ssl.model(ref_audio_16k)["last_hidden_state"].transpose(1, 2)
|
|
|
|
|
|
def export(vits_path, gpt_path, project_name):
|
|
vits = VitsModel(vits_path)
|
|
gpt = T2SModel(gpt_path, vits)
|
|
gpt_sovits = GptSoVits(vits, gpt)
|
|
ssl = SSLModel()
|
|
ref_seq = torch.LongTensor([cleaned_text_to_sequence(["n", "i2", "h", "ao3", ",", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])])
|
|
text_seq = torch.LongTensor([cleaned_text_to_sequence(["w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])])
|
|
ref_bert = torch.randn((ref_seq.shape[1], 1024)).float()
|
|
text_bert = torch.randn((text_seq.shape[1], 1024)).float()
|
|
ref_audio = torch.randn((1, 48000 * 5)).float()
|
|
|
|
ref_audio_16k = torchaudio.functional.resample(ref_audio,48000,16000).float()
|
|
ref_audio_sr = torchaudio.functional.resample(ref_audio,48000,vits.hps.data.sampling_rate).float()
|
|
|
|
try:
|
|
os.mkdir(f"onnx/{project_name}")
|
|
except:
|
|
pass
|
|
|
|
ssl_content = ssl(ref_audio_16k).float()
|
|
|
|
debug = False
|
|
|
|
if debug:
|
|
a, b = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, debug=debug)
|
|
soundfile.write("out1.wav", a.cpu().detach().numpy(), vits.hps.data.sampling_rate)
|
|
soundfile.write("out2.wav", b[0], vits.hps.data.sampling_rate)
|
|
return
|
|
|
|
a = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content).detach().cpu().numpy()
|
|
|
|
soundfile.write("out.wav", a, vits.hps.data.sampling_rate)
|
|
|
|
gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, project_name)
|
|
|
|
MoeVSConf = {
|
|
"Folder" : f"{project_name}",
|
|
"Name" : f"{project_name}",
|
|
"Type" : "GPT-SoVits",
|
|
"Rate" : vits.hps.data.sampling_rate,
|
|
"NumLayers": gpt.t2s_model.num_layers,
|
|
"EmbeddingDim": gpt.t2s_model.embedding_dim,
|
|
"Dict": "BasicDict",
|
|
"BertPath": "chinese-roberta-wwm-ext-large",
|
|
"Symbol": symbols,
|
|
"AddBlank": False
|
|
}
|
|
|
|
MoeVSConfJson = json.dumps(MoeVSConf)
|
|
with open(f"onnx/{project_name}.json", 'w') as MoeVsConfFile:
|
|
json.dump(MoeVSConf, MoeVsConfFile, indent = 4)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
os.mkdir("onnx")
|
|
except:
|
|
pass
|
|
|
|
gpt_path = "GPT_weights/nahida-e25.ckpt"
|
|
vits_path = "SoVITS_weights/nahida_e30_s3930.pth"
|
|
exp_path = "nahida"
|
|
export(vits_path, gpt_path, exp_path)
|
|
|
|
|