Update inference_webui.py
Browse files- inference_webui.py +224 -659
inference_webui.py
CHANGED
@@ -1,673 +1,238 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
全部按中文识别
|
6 |
-
全部按英文识别
|
7 |
-
全部按日文识别
|
8 |
-
'''
|
9 |
-
import logging
|
10 |
-
import traceback
|
11 |
-
|
12 |
-
logging.getLogger("markdown_it").setLevel(logging.ERROR)
|
13 |
-
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
14 |
-
logging.getLogger("httpcore").setLevel(logging.ERROR)
|
15 |
-
logging.getLogger("httpx").setLevel(logging.ERROR)
|
16 |
-
logging.getLogger("asyncio").setLevel(logging.ERROR)
|
17 |
-
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
|
18 |
-
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
|
19 |
-
logging.getLogger("multipart.multipart").setLevel(logging.ERROR)
|
20 |
-
import gradio.analytics as analytics
|
21 |
-
analytics.version_check = lambda:None
|
22 |
-
analytics.get_local_ip_address= lambda :"127.0.0.1"##不干掉本地联不通亚马逊的get_local_ip服务器
|
23 |
-
import nltk
|
24 |
-
nltk.download('averaged_perceptron_tagger_eng')
|
25 |
-
import LangSegment, os, re, sys, json
|
26 |
-
import pdb
|
27 |
-
import spaces
|
28 |
-
import torch
|
29 |
-
|
30 |
-
version="v2"#os.environ.get("version","v2")
|
31 |
-
cnhubert_base_path = os.environ.get(
|
32 |
-
"cnhubert_base_path", "pretrained_models/chinese-hubert-base"
|
33 |
-
)
|
34 |
-
bert_path = os.environ.get(
|
35 |
-
"bert_path", "pretrained_models/chinese-roberta-wwm-ext-large"
|
36 |
-
)
|
37 |
-
|
38 |
-
punctuation = set(['!', '?', '…', ',', '.', '-'," "])
|
39 |
import gradio as gr
|
40 |
-
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
41 |
import numpy as np
|
42 |
-
import
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
}
|
90 |
-
|
91 |
-
|
92 |
-
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
93 |
-
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
|
94 |
-
if is_half == True:
|
95 |
-
bert_model = bert_model.half().to(device)
|
96 |
-
else:
|
97 |
-
bert_model = bert_model.to(device)
|
98 |
-
|
99 |
-
|
100 |
-
def get_bert_feature(text, word2ph):
|
101 |
-
with torch.no_grad():
|
102 |
-
inputs = tokenizer(text, return_tensors="pt")
|
103 |
-
for i in inputs:
|
104 |
-
inputs[i] = inputs[i].to(device)
|
105 |
-
res = bert_model(**inputs, output_hidden_states=True)
|
106 |
-
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
107 |
-
assert len(word2ph) == len(text)
|
108 |
-
phone_level_feature = []
|
109 |
-
for i in range(len(word2ph)):
|
110 |
-
repeat_feature = res[i].repeat(word2ph[i], 1)
|
111 |
-
phone_level_feature.append(repeat_feature)
|
112 |
-
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
113 |
-
return phone_level_feature.T
|
114 |
-
|
115 |
-
|
116 |
-
class DictToAttrRecursive(dict):
|
117 |
-
def __init__(self, input_dict):
|
118 |
-
super().__init__(input_dict)
|
119 |
-
for key, value in input_dict.items():
|
120 |
-
if isinstance(value, dict):
|
121 |
-
value = DictToAttrRecursive(value)
|
122 |
-
self[key] = value
|
123 |
-
setattr(self, key, value)
|
124 |
-
|
125 |
-
def __getattr__(self, item):
|
126 |
-
try:
|
127 |
-
return self[item]
|
128 |
-
except KeyError:
|
129 |
-
raise AttributeError(f"Attribute {item} not found")
|
130 |
-
|
131 |
-
def __setattr__(self, key, value):
|
132 |
-
if isinstance(value, dict):
|
133 |
-
value = DictToAttrRecursive(value)
|
134 |
-
super(DictToAttrRecursive, self).__setitem__(key, value)
|
135 |
-
super().__setattr__(key, value)
|
136 |
-
|
137 |
-
def __delattr__(self, item):
|
138 |
-
try:
|
139 |
-
del self[item]
|
140 |
-
except KeyError:
|
141 |
-
raise AttributeError(f"Attribute {item} not found")
|
142 |
-
|
143 |
-
|
144 |
-
ssl_model = cnhubert.get_model()
|
145 |
-
if is_half == True:
|
146 |
-
ssl_model = ssl_model.half().to(device)
|
147 |
-
else:
|
148 |
-
ssl_model = ssl_model.to(device)
|
149 |
-
|
150 |
-
|
151 |
-
def change_sovits_weights(sovits_path,prompt_language=None,text_language=None):
|
152 |
-
global vq_model, hps, version, dict_language
|
153 |
-
dict_s2 = torch.load(sovits_path, map_location="cpu")
|
154 |
-
hps = dict_s2["config"]
|
155 |
-
hps = DictToAttrRecursive(hps)
|
156 |
-
hps.model.semantic_frame_rate = "25hz"
|
157 |
-
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
|
158 |
-
hps.model.version = "v1"
|
159 |
-
else:
|
160 |
-
hps.model.version = "v2"
|
161 |
-
version = hps.model.version
|
162 |
-
# print("sovits版本:",hps.model.version)
|
163 |
-
vq_model = SynthesizerTrn(
|
164 |
-
hps.data.filter_length // 2 + 1,
|
165 |
-
hps.train.segment_size // hps.data.hop_length,
|
166 |
-
n_speakers=hps.data.n_speakers,
|
167 |
-
**hps.model
|
168 |
-
)
|
169 |
-
if ("pretrained" not in sovits_path):
|
170 |
-
del vq_model.enc_q
|
171 |
-
if is_half == True:
|
172 |
-
vq_model = vq_model.half().to(device)
|
173 |
-
else:
|
174 |
-
vq_model = vq_model.to(device)
|
175 |
-
vq_model.eval()
|
176 |
-
print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
|
177 |
-
dict_language = dict_language_v1 if version =='v1' else dict_language_v2
|
178 |
-
if prompt_language is not None and text_language is not None:
|
179 |
-
if prompt_language in list(dict_language.keys()):
|
180 |
-
prompt_text_update, prompt_language_update = {'__type__':'update'}, {'__type__':'update', 'value':prompt_language}
|
181 |
-
else:
|
182 |
-
prompt_text_update = {'__type__':'update', 'value':''}
|
183 |
-
prompt_language_update = {'__type__':'update', 'value':i18n("中文")}
|
184 |
-
if text_language in list(dict_language.keys()):
|
185 |
-
text_update, text_language_update = {'__type__':'update'}, {'__type__':'update', 'value':text_language}
|
186 |
-
else:
|
187 |
-
text_update = {'__type__':'update', 'value':''}
|
188 |
-
text_language_update = {'__type__':'update', 'value':i18n("中文")}
|
189 |
-
return {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
change_sovits_weights("pretrained_models/gsv-v2final-pretrained/s2G2333k.pth")
|
194 |
-
|
195 |
-
|
196 |
-
def change_gpt_weights(gpt_path):
|
197 |
-
global hz, max_sec, t2s_model, config
|
198 |
-
hz = 50
|
199 |
-
dict_s1 = torch.load(gpt_path, map_location="cpu")
|
200 |
-
config = dict_s1["config"]
|
201 |
-
max_sec = config["data"]["max_sec"]
|
202 |
-
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
|
203 |
-
t2s_model.load_state_dict(dict_s1["weight"])
|
204 |
-
if is_half == True:
|
205 |
-
t2s_model = t2s_model.half()
|
206 |
-
t2s_model = t2s_model.to(device)
|
207 |
-
t2s_model.eval()
|
208 |
-
total = sum([param.nelement() for param in t2s_model.parameters()])
|
209 |
-
print("Number of parameter: %.2fM" % (total / 1e6))
|
210 |
-
|
211 |
-
|
212 |
-
change_gpt_weights("pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt")
|
213 |
-
|
214 |
-
|
215 |
-
def get_spepc(hps, filename):
|
216 |
-
audio = load_audio(filename, int(hps.data.sampling_rate))
|
217 |
-
audio = torch.FloatTensor(audio)
|
218 |
-
maxx=audio.abs().max()
|
219 |
-
if(maxx>1):audio/=min(2,maxx)
|
220 |
-
audio_norm = audio
|
221 |
-
audio_norm = audio_norm.unsqueeze(0)
|
222 |
-
spec = spectrogram_torch(
|
223 |
-
audio_norm,
|
224 |
-
hps.data.filter_length,
|
225 |
-
hps.data.sampling_rate,
|
226 |
-
hps.data.hop_length,
|
227 |
-
hps.data.win_length,
|
228 |
-
center=False,
|
229 |
-
)
|
230 |
-
return spec
|
231 |
-
|
232 |
-
def clean_text_inf(text, language, version):
|
233 |
-
phones, word2ph, norm_text = clean_text(text, language, version)
|
234 |
-
phones = cleaned_text_to_sequence(phones, version)
|
235 |
-
return phones, word2ph, norm_text
|
236 |
-
|
237 |
-
dtype=torch.float16 if is_half == True else torch.float32
|
238 |
-
def get_bert_inf(phones, word2ph, norm_text, language):
|
239 |
-
language=language.replace("all_","")
|
240 |
-
if language == "zh":
|
241 |
-
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
|
242 |
-
else:
|
243 |
-
bert = torch.zeros(
|
244 |
-
(1024, len(phones)),
|
245 |
-
dtype=torch.float16 if is_half == True else torch.float32,
|
246 |
-
).to(device)
|
247 |
-
|
248 |
-
return bert
|
249 |
-
|
250 |
-
|
251 |
-
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
|
252 |
-
|
253 |
-
|
254 |
-
def get_first(text):
|
255 |
-
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
256 |
-
text = re.split(pattern, text)[0].strip()
|
257 |
-
return text
|
258 |
-
|
259 |
-
from text import chinese
|
260 |
-
def get_phones_and_bert(text,language,version):
|
261 |
-
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
|
262 |
-
language = language.replace("all_","")
|
263 |
-
if language == "en":
|
264 |
-
LangSegment.setfilters(["en"])
|
265 |
-
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
|
266 |
-
else:
|
267 |
-
# 因无法区别中日韩文汉字,以用户输入为准
|
268 |
-
formattext = text
|
269 |
-
while " " in formattext:
|
270 |
-
formattext = formattext.replace(" ", " ")
|
271 |
-
if language == "zh":
|
272 |
-
if re.search(r'[A-Za-z]', formattext):
|
273 |
-
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
274 |
-
formattext = chinese.mix_text_normalize(formattext)
|
275 |
-
return get_phones_and_bert(formattext,"zh",version)
|
276 |
-
else:
|
277 |
-
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
|
278 |
-
bert = get_bert_feature(norm_text, word2ph).to(device)
|
279 |
-
elif language == "yue" and re.search(r'[A-Za-z]', formattext):
|
280 |
-
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
|
281 |
-
formattext = chinese.mix_text_normalize(formattext)
|
282 |
-
return get_phones_and_bert(formattext,"yue",version)
|
283 |
-
else:
|
284 |
-
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
|
285 |
-
bert = torch.zeros(
|
286 |
-
(1024, len(phones)),
|
287 |
-
dtype=torch.float16 if is_half == True else torch.float32,
|
288 |
-
).to(device)
|
289 |
-
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
|
290 |
-
textlist=[]
|
291 |
-
langlist=[]
|
292 |
-
LangSegment.setfilters(["zh","ja","en","ko"])
|
293 |
-
if language == "auto":
|
294 |
-
for tmp in LangSegment.getTexts(text):
|
295 |
-
langlist.append(tmp["lang"])
|
296 |
-
textlist.append(tmp["text"])
|
297 |
-
elif language == "auto_yue":
|
298 |
-
for tmp in LangSegment.getTexts(text):
|
299 |
-
if tmp["lang"] == "zh":
|
300 |
-
tmp["lang"] = "yue"
|
301 |
-
langlist.append(tmp["lang"])
|
302 |
-
textlist.append(tmp["text"])
|
303 |
-
else:
|
304 |
-
for tmp in LangSegment.getTexts(text):
|
305 |
-
if tmp["lang"] == "en":
|
306 |
-
langlist.append(tmp["lang"])
|
307 |
-
else:
|
308 |
-
# 因无法区别中日韩文汉字,以用户输入为准
|
309 |
-
langlist.append(language)
|
310 |
-
textlist.append(tmp["text"])
|
311 |
-
print(textlist)
|
312 |
-
print(langlist)
|
313 |
-
phones_list = []
|
314 |
-
bert_list = []
|
315 |
-
norm_text_list = []
|
316 |
-
for i in range(len(textlist)):
|
317 |
-
lang = langlist[i]
|
318 |
-
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version)
|
319 |
-
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
320 |
-
phones_list.append(phones)
|
321 |
-
norm_text_list.append(norm_text)
|
322 |
-
bert_list.append(bert)
|
323 |
-
bert = torch.cat(bert_list, dim=1)
|
324 |
-
phones = sum(phones_list, [])
|
325 |
-
norm_text = ''.join(norm_text_list)
|
326 |
|
327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
t = []
|
359 |
-
if prompt_text is None or len(prompt_text) == 0:
|
360 |
-
ref_free = True
|
361 |
-
t0 = ttime()
|
362 |
-
prompt_language = dict_language[prompt_language]
|
363 |
-
text_language = dict_language[text_language]
|
364 |
|
365 |
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
print(i18n("实际输入的参考文本:"), prompt_text)
|
370 |
-
text = text.strip("\n")
|
371 |
-
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
|
372 |
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
)
|
378 |
-
if not ref_free:
|
379 |
-
with torch.no_grad():
|
380 |
-
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
|
381 |
-
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
|
382 |
-
gr.Warning(i18n("参考音频在3~10秒范围外,请更换!"))
|
383 |
-
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
|
384 |
-
wav16k = torch.from_numpy(wav16k)
|
385 |
-
zero_wav_torch = torch.from_numpy(zero_wav)
|
386 |
-
if is_half == True:
|
387 |
-
wav16k = wav16k.half().to(device)
|
388 |
-
zero_wav_torch = zero_wav_torch.half().to(device)
|
389 |
-
else:
|
390 |
-
wav16k = wav16k.to(device)
|
391 |
-
zero_wav_torch = zero_wav_torch.to(device)
|
392 |
-
wav16k = torch.cat([wav16k, zero_wav_torch])
|
393 |
-
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
|
394 |
-
"last_hidden_state"
|
395 |
-
].transpose(
|
396 |
-
1, 2
|
397 |
-
) # .float()
|
398 |
-
codes = vq_model.extract_latent(ssl_content)
|
399 |
-
prompt_semantic = codes[0, 0]
|
400 |
-
prompt = prompt_semantic.unsqueeze(0).to(device)
|
401 |
-
|
402 |
-
t1 = ttime()
|
403 |
-
t.append(t1-t0)
|
404 |
-
|
405 |
-
if (how_to_cut == i18n("凑四句一切")):
|
406 |
-
text = cut1(text)
|
407 |
-
elif (how_to_cut == i18n("凑50字一切")):
|
408 |
-
text = cut2(text)
|
409 |
-
elif (how_to_cut == i18n("按中文句号。切")):
|
410 |
-
text = cut3(text)
|
411 |
-
elif (how_to_cut == i18n("按英文句号.切")):
|
412 |
-
text = cut4(text)
|
413 |
-
elif (how_to_cut == i18n("按标点符号切")):
|
414 |
-
text = cut5(text)
|
415 |
-
while "\n\n" in text:
|
416 |
-
text = text.replace("\n\n", "\n")
|
417 |
-
print(i18n("实际输入的目标文本(切句后):"), text)
|
418 |
-
texts = text.split("\n")
|
419 |
-
texts = process_text(texts)
|
420 |
-
texts = merge_short_text_in_array(texts, 5)
|
421 |
-
audio_opt = []
|
422 |
-
if not ref_free:
|
423 |
-
phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language, version)
|
424 |
-
|
425 |
-
for i_text,text in enumerate(texts):
|
426 |
-
# 解决输入目标文本的空行导致报错的问题
|
427 |
-
if (len(text.strip()) == 0):
|
428 |
-
continue
|
429 |
-
if (text[-1] not in splits): text += "。" if text_language != "en" else "."
|
430 |
-
print(i18n("实际输入的目标文本(每句):"), text)
|
431 |
-
phones2,bert2,norm_text2=get_phones_and_bert(text, text_language, version)
|
432 |
-
print(i18n("前端处理后的文本(每句):"), norm_text2)
|
433 |
-
if not ref_free:
|
434 |
-
bert = torch.cat([bert1, bert2], 1)
|
435 |
-
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
|
436 |
-
else:
|
437 |
-
bert = bert2
|
438 |
-
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
|
439 |
-
|
440 |
-
bert = bert.to(device).unsqueeze(0)
|
441 |
-
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
|
442 |
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
temperature=temperature,
|
458 |
-
early_stop_num=hz * max_sec,
|
459 |
-
)
|
460 |
-
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
|
461 |
-
cache[i_text]=pred_semantic
|
462 |
-
t3 = ttime()
|
463 |
-
refers=[]
|
464 |
-
if(inp_refs):
|
465 |
-
for path in inp_refs:
|
466 |
-
try:
|
467 |
-
refer = get_spepc(hps, path.name).to(dtype).to(device)
|
468 |
-
refers.append(refer)
|
469 |
-
except:
|
470 |
-
traceback.print_exc()
|
471 |
-
if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)]
|
472 |
-
audio = (vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers,speed=speed).detach().cpu().numpy()[0, 0])
|
473 |
-
max_audio=np.abs(audio).max()#简单防止16bit爆音
|
474 |
-
if max_audio>1:audio/=max_audio
|
475 |
-
audio_opt.append(audio)
|
476 |
-
audio_opt.append(zero_wav)
|
477 |
-
t4 = ttime()
|
478 |
-
t.extend([t2 - t1,t3 - t2, t4 - t3])
|
479 |
-
t1 = ttime()
|
480 |
-
print("%.3f\t%.3f\t%.3f\t%.3f" %
|
481 |
-
(t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3]))
|
482 |
-
)
|
483 |
-
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
|
484 |
-
np.int16
|
485 |
)
|
486 |
|
487 |
-
|
488 |
-
|
489 |
-
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
490 |
-
if todo_text[-1] not in splits:
|
491 |
-
todo_text += "。"
|
492 |
-
i_split_head = i_split_tail = 0
|
493 |
-
len_text = len(todo_text)
|
494 |
-
todo_texts = []
|
495 |
-
while 1:
|
496 |
-
if i_split_head >= len_text:
|
497 |
-
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
498 |
-
if todo_text[i_split_head] in splits:
|
499 |
-
i_split_head += 1
|
500 |
-
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
501 |
-
i_split_tail = i_split_head
|
502 |
-
else:
|
503 |
-
i_split_head += 1
|
504 |
-
return todo_texts
|
505 |
-
|
506 |
-
|
507 |
-
def cut1(inp):
|
508 |
-
inp = inp.strip("\n")
|
509 |
-
inps = split(inp)
|
510 |
-
split_idx = list(range(0, len(inps), 4))
|
511 |
-
split_idx[-1] = None
|
512 |
-
if len(split_idx) > 1:
|
513 |
-
opts = []
|
514 |
-
for idx in range(len(split_idx) - 1):
|
515 |
-
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
|
516 |
-
else:
|
517 |
-
opts = [inp]
|
518 |
-
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
519 |
-
return "\n".join(opts)
|
520 |
-
|
521 |
-
|
522 |
-
def cut2(inp):
|
523 |
-
inp = inp.strip("\n")
|
524 |
-
inps = split(inp)
|
525 |
-
if len(inps) < 2:
|
526 |
-
return inp
|
527 |
-
opts = []
|
528 |
-
summ = 0
|
529 |
-
tmp_str = ""
|
530 |
-
for i in range(len(inps)):
|
531 |
-
summ += len(inps[i])
|
532 |
-
tmp_str += inps[i]
|
533 |
-
if summ > 50:
|
534 |
-
summ = 0
|
535 |
-
opts.append(tmp_str)
|
536 |
-
tmp_str = ""
|
537 |
-
if tmp_str != "":
|
538 |
-
opts.append(tmp_str)
|
539 |
-
# print(opts)
|
540 |
-
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
541 |
-
opts[-2] = opts[-2] + opts[-1]
|
542 |
-
opts = opts[:-1]
|
543 |
-
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
544 |
-
return "\n".join(opts)
|
545 |
-
|
546 |
-
|
547 |
-
def cut3(inp):
|
548 |
-
inp = inp.strip("\n")
|
549 |
-
opts = ["%s" % item for item in inp.strip("。").split("。")]
|
550 |
-
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
551 |
-
return "\n".join(opts)
|
552 |
-
|
553 |
-
def cut4(inp):
|
554 |
-
inp = inp.strip("\n")
|
555 |
-
opts = ["%s" % item for item in inp.strip(".").split(".")]
|
556 |
-
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
557 |
-
return "\n".join(opts)
|
558 |
-
|
559 |
-
|
560 |
-
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
561 |
-
def cut5(inp):
|
562 |
-
inp = inp.strip("\n")
|
563 |
-
punds = {',', '.', ';', '?', '!', '、', ',', '。', '?', '!', ';', ':', '…'}
|
564 |
-
mergeitems = []
|
565 |
-
items = []
|
566 |
-
|
567 |
-
for i, char in enumerate(inp):
|
568 |
-
if char in punds:
|
569 |
-
if char == '.' and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
|
570 |
-
items.append(char)
|
571 |
-
else:
|
572 |
-
items.append(char)
|
573 |
-
mergeitems.append("".join(items))
|
574 |
-
items = []
|
575 |
-
else:
|
576 |
-
items.append(char)
|
577 |
-
|
578 |
-
if items:
|
579 |
-
mergeitems.append("".join(items))
|
580 |
-
|
581 |
-
opt = [item for item in mergeitems if not set(item).issubset(punds)]
|
582 |
-
return "\n".join(opt)
|
583 |
-
|
584 |
-
|
585 |
-
def custom_sort_key(s):
|
586 |
-
# 使用正则表达式提取字符串中的数字部分和非数字部分
|
587 |
-
parts = re.split('(\d+)', s)
|
588 |
-
# 将数字部分转换为整数,非数字部分保持不变
|
589 |
-
parts = [int(part) if part.isdigit() else part for part in parts]
|
590 |
-
return parts
|
591 |
-
|
592 |
-
def process_text(texts):
|
593 |
-
_text=[]
|
594 |
-
if all(text in [None, " ", "\n",""] for text in texts):
|
595 |
-
raise ValueError(i18n("请输入有效文本"))
|
596 |
-
for text in texts:
|
597 |
-
if text in [None, " ", ""]:
|
598 |
-
pass
|
599 |
-
else:
|
600 |
-
_text.append(text)
|
601 |
-
return _text
|
602 |
-
|
603 |
-
|
604 |
-
def html_center(text, label='p'):
|
605 |
-
return f"""<div style="text-align: center; margin: 100; padding: 50;">
|
606 |
-
<{label} style="margin: 0; padding: 0;">{text}</{label}>
|
607 |
-
</div>"""
|
608 |
-
|
609 |
-
def html_left(text, label='p'):
|
610 |
-
return f"""<div style="text-align: left; margin: 0; padding: 0;">
|
611 |
-
<{label} style="margin: 0; padding: 0;">{text}</{label}>
|
612 |
-
</div>"""
|
613 |
-
|
614 |
-
css = """
|
615 |
-
footer {
|
616 |
-
visibility: hidden;
|
617 |
-
}
|
618 |
-
"""
|
619 |
-
|
620 |
-
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as app:
|
621 |
-
|
622 |
-
with gr.Group():
|
623 |
-
gr.Markdown(html_center(i18n("*请上传并填写参考信息"),'h3'))
|
624 |
-
with gr.Row():
|
625 |
-
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath")
|
626 |
-
with gr.Column():
|
627 |
-
ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True)
|
628 |
-
gr.Markdown(html_left(i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开。<br>开启后无视填写的参考文本。")))
|
629 |
-
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="", lines=3, max_lines=3)
|
630 |
-
prompt_language = gr.Dropdown(
|
631 |
-
label=i18n("参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文")
|
632 |
-
)
|
633 |
-
inp_refs = gr.File(label=i18n("可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。"),file_count="multiple")
|
634 |
-
gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"),'h3'))
|
635 |
-
with gr.Row():
|
636 |
-
with gr.Column():
|
637 |
-
text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=26, max_lines=26)
|
638 |
-
with gr.Column():
|
639 |
-
text_language = gr.Dropdown(
|
640 |
-
label=i18n("需要合成的语种")+i18n(".限制范围越小判别效果越好。"), choices=list(dict_language.keys()), value=i18n("中文")
|
641 |
-
)
|
642 |
-
how_to_cut = gr.Dropdown(
|
643 |
-
label=i18n("怎么切"),
|
644 |
-
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
|
645 |
-
value=i18n("凑四句一切"),
|
646 |
-
interactive=True
|
647 |
-
)
|
648 |
-
gr.Markdown(value=html_center(i18n("语速调整,高为更快")))
|
649 |
-
if_freeze=gr.Checkbox(label=i18n("是否直接对上次合成结果调整语速和音色。防止随机性。"), value=False, interactive=True,show_label=True)
|
650 |
-
speed = gr.Slider(minimum=0.6,maximum=1.65,step=0.05,label=i18n("语速"),value=1,interactive=True)
|
651 |
-
gr.Markdown(html_center(i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):")))
|
652 |
-
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=15,interactive=True)
|
653 |
-
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True)
|
654 |
-
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True)
|
655 |
-
with gr.Row():
|
656 |
-
inference_button = gr.Button(i18n("合成语音"), variant="primary", size='lg')
|
657 |
-
output = gr.Audio(label=i18n("输出的语音"))
|
658 |
-
|
659 |
-
inference_button.click(
|
660 |
-
get_tts_wav,
|
661 |
-
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free,speed,if_freeze,inp_refs],
|
662 |
-
[output],
|
663 |
-
)
|
664 |
-
|
665 |
-
if __name__ == '__main__':
|
666 |
-
# app.queue(concurrency_count=511, max_size=1022).launch(
|
667 |
-
app.queue().launch(
|
668 |
-
server_name="0.0.0.0",
|
669 |
-
inbrowser=True,
|
670 |
-
# share=True,
|
671 |
-
# server_port=infer_ttswebui,
|
672 |
-
quiet=True,
|
673 |
-
)
|
|
|
1 |
+
import random
|
2 |
+
import os
|
3 |
+
import uuid
|
4 |
+
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import gradio as gr
|
|
|
6 |
import numpy as np
|
7 |
+
import spaces
|
8 |
+
import torch
|
9 |
+
from diffusers import DiffusionPipeline
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
# Create permanent storage directory
|
13 |
+
SAVE_DIR = "saved_images" # Gradio will handle the persistence
|
14 |
+
if not os.path.exists(SAVE_DIR):
|
15 |
+
os.makedirs(SAVE_DIR, exist_ok=True)
|
16 |
+
|
17 |
+
# Load the default image
|
18 |
+
DEFAULT_IMAGE_PATH = "cover1.webp"
|
19 |
+
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
repo_id = "black-forest-labs/FLUX.1-dev"
|
22 |
+
adapter_id = "strangerzonehf/Ctoon-Plus-Plus"
|
23 |
+
|
24 |
+
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
25 |
+
pipeline.load_lora_weights(adapter_id)
|
26 |
+
pipeline = pipeline.to(device)
|
27 |
+
|
28 |
+
MAX_SEED = np.iinfo(np.int32).max
|
29 |
+
MAX_IMAGE_SIZE = 1024
|
30 |
+
|
31 |
+
def save_generated_image(image, prompt):
|
32 |
+
# Generate unique filename with timestamp
|
33 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
34 |
+
unique_id = str(uuid.uuid4())[:8]
|
35 |
+
filename = f"{timestamp}_{unique_id}.png"
|
36 |
+
filepath = os.path.join(SAVE_DIR, filename)
|
37 |
+
|
38 |
+
# Save the image
|
39 |
+
image.save(filepath)
|
40 |
+
|
41 |
+
# Save metadata
|
42 |
+
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
|
43 |
+
with open(metadata_file, "a", encoding="utf-8") as f:
|
44 |
+
f.write(f"{filename}|{prompt}|{timestamp}\n")
|
45 |
+
|
46 |
+
return filepath
|
47 |
+
|
48 |
+
def load_generated_images():
|
49 |
+
if not os.path.exists(SAVE_DIR):
|
50 |
+
return []
|
51 |
+
|
52 |
+
# Load all images from the directory
|
53 |
+
image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR)
|
54 |
+
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
|
55 |
+
# Sort by creation time (newest first)
|
56 |
+
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
|
57 |
+
return image_files
|
58 |
+
|
59 |
+
def load_predefined_images():
|
60 |
+
# Return empty list since we're not using predefined images
|
61 |
+
return []
|
62 |
+
|
63 |
+
@spaces.GPU(duration=120)
|
64 |
+
def inference(
|
65 |
+
prompt: str,
|
66 |
+
seed: int,
|
67 |
+
randomize_seed: bool,
|
68 |
+
width: int,
|
69 |
+
height: int,
|
70 |
+
guidance_scale: float,
|
71 |
+
num_inference_steps: int,
|
72 |
+
lora_scale: float,
|
73 |
+
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
74 |
+
):
|
75 |
+
if randomize_seed:
|
76 |
+
seed = random.randint(0, MAX_SEED)
|
77 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
78 |
+
|
79 |
+
image = pipeline(
|
80 |
+
prompt=prompt,
|
81 |
+
guidance_scale=guidance_scale,
|
82 |
+
num_inference_steps=num_inference_steps,
|
83 |
+
width=width,
|
84 |
+
height=height,
|
85 |
+
generator=generator,
|
86 |
+
joint_attention_kwargs={"scale": lora_scale},
|
87 |
+
).images[0]
|
88 |
+
|
89 |
+
# Save the generated image
|
90 |
+
filepath = save_generated_image(image, prompt)
|
91 |
+
|
92 |
+
# Return the image, seed, and updated gallery
|
93 |
+
return image, seed, load_generated_images()
|
94 |
+
|
95 |
+
|
96 |
+
examples = [
|
97 |
+
"A cartoon drawing of a majestic Persian cat wearing a tiny golden hanbok and crown. The cat has sparkling blue eyes and perfectly groomed white fur that seems to glow. It sits with regal posture on a traditional Korean cushion decorated with cloud patterns. The background is a soft pink with delicate cherry blossom petals floating around. The cat's expression shows a mix of dignity and subtle amusement. [trigger]",
|
98 |
+
|
99 |
+
"A cartoon drawing of an enthusiastic orange tabby cat in a puffy white chef's hat. The cat stands on its hind legs at a tiny wooden counter, wearing a white apron covered in flour pawprints. Its green eyes are focused intently on the cookie dough it's rolling with a miniature rolling pin. The background is a warm cream color with tiny floating cooking utensils and swirling steam patterns. [trigger]",
|
100 |
+
|
101 |
+
"A cartoon drawing of a sophisticated tuxedo cat photographer with round wire-rimmed glasses perched on its nose. The cat balances carefully on a tree branch, one paw holding a vintage camera while its tail curls in concentration. It wears a tiny brown beret and leather camera bag. The background is a soft blue with playful butterfly silhouettes and floating leaves. [trigger]",
|
102 |
+
|
103 |
+
"A cartoon drawing of a chubby Scottish Fold cat floating in a space capsule. The cat wears an adorable white spacesuit with colorful patches, its round face visible through the helmet visor. Its paws are batting at star-shaped toys that float around in zero gravity. The background shows a stylized view of Earth and twinkling stars through the capsule window. [trigger]",
|
104 |
+
|
105 |
+
"A cartoon drawing of an elegant Siamese ballet dancer cat in mid-twirl. The cat wears a sparkly pink tutu that flares out perfectly, with tiny satin ribbons wrapped around its ankles. Its blue eyes are closed in graceful concentration as it performs a pirouette. The background is a soft lavender with swirling musical notes and floating rose petals. [trigger]",
|
106 |
+
|
107 |
+
"A cartoon drawing of an adventurous calico cat riding atop a smiling elephant. The cat wears a tiny khaki explorer's vest filled with equipment, and a safari hat tilted at a jaunty angle. It holds a comically large map while the elephant's trunk curls up playfully. The background is a warm orange sunset with stylized acacia trees and cartoon birds soaring past. [trigger]"
|
108 |
+
]
|
109 |
+
css = """
|
110 |
+
footer {
|
111 |
+
visibility: hidden;
|
112 |
}
|
113 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css, analytics_enabled=False) as demo:
|
116 |
+
gr.HTML('<div class="title"> Cartoon Image Generation </div>')
|
117 |
+
|
118 |
+
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fginigen-cartoon.hf.space">
|
119 |
+
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fginigen-cartoon.hf.space&countColor=%23263759" />
|
120 |
+
</a>""")
|
121 |
+
|
122 |
+
|
123 |
+
with gr.Tabs() as tabs:
|
124 |
+
with gr.Tab("Generation"):
|
125 |
+
with gr.Column(elem_id="col-container"):
|
126 |
+
with gr.Row():
|
127 |
+
prompt = gr.Text(
|
128 |
+
label="Prompt",
|
129 |
+
show_label=False,
|
130 |
+
max_lines=1,
|
131 |
+
placeholder="Enter your prompt",
|
132 |
+
container=False,
|
133 |
+
)
|
134 |
+
run_button = gr.Button("Run", scale=0)
|
135 |
|
136 |
+
# Modified to include the default image
|
137 |
+
result = gr.Image(
|
138 |
+
label="Result",
|
139 |
+
show_label=False,
|
140 |
+
value=DEFAULT_IMAGE_PATH # Set the default image
|
141 |
+
)
|
142 |
|
143 |
+
with gr.Accordion("Advanced Settings", open=False):
|
144 |
+
seed = gr.Slider(
|
145 |
+
label="Seed",
|
146 |
+
minimum=0,
|
147 |
+
maximum=MAX_SEED,
|
148 |
+
step=1,
|
149 |
+
value=42,
|
150 |
+
)
|
151 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
152 |
+
|
153 |
+
with gr.Row():
|
154 |
+
width = gr.Slider(
|
155 |
+
label="Width",
|
156 |
+
minimum=256,
|
157 |
+
maximum=MAX_IMAGE_SIZE,
|
158 |
+
step=32,
|
159 |
+
value=1024,
|
160 |
+
)
|
161 |
+
height = gr.Slider(
|
162 |
+
label="Height",
|
163 |
+
minimum=256,
|
164 |
+
maximum=MAX_IMAGE_SIZE,
|
165 |
+
step=32,
|
166 |
+
value=768,
|
167 |
+
)
|
168 |
+
|
169 |
+
with gr.Row():
|
170 |
+
guidance_scale = gr.Slider(
|
171 |
+
label="Guidance scale",
|
172 |
+
minimum=0.0,
|
173 |
+
maximum=10.0,
|
174 |
+
step=0.1,
|
175 |
+
value=3.5,
|
176 |
+
)
|
177 |
+
num_inference_steps = gr.Slider(
|
178 |
+
label="Number of inference steps",
|
179 |
+
minimum=1,
|
180 |
+
maximum=50,
|
181 |
+
step=1,
|
182 |
+
value=30,
|
183 |
+
)
|
184 |
+
lora_scale = gr.Slider(
|
185 |
+
label="LoRA scale",
|
186 |
+
minimum=0.0,
|
187 |
+
maximum=1.0,
|
188 |
+
step=0.1,
|
189 |
+
value=1.0,
|
190 |
+
)
|
191 |
+
|
192 |
+
gr.Examples(
|
193 |
+
examples=examples,
|
194 |
+
inputs=[prompt],
|
195 |
+
outputs=[result, seed],
|
196 |
+
)
|
197 |
|
198 |
+
with gr.Tab("Gallery"):
|
199 |
+
gallery_header = gr.Markdown("### Generated Images Gallery")
|
200 |
+
generated_gallery = gr.Gallery(
|
201 |
+
label="Generated Images",
|
202 |
+
columns=6,
|
203 |
+
show_label=False,
|
204 |
+
value=load_generated_images(),
|
205 |
+
elem_id="generated_gallery",
|
206 |
+
height="auto"
|
207 |
+
)
|
208 |
+
refresh_btn = gr.Button("🔄 Refresh Gallery")
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
|
211 |
+
# Event handlers
|
212 |
+
def refresh_gallery():
|
213 |
+
return load_generated_images()
|
|
|
|
|
|
|
214 |
|
215 |
+
refresh_btn.click(
|
216 |
+
fn=refresh_gallery,
|
217 |
+
inputs=None,
|
218 |
+
outputs=generated_gallery,
|
219 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
+
gr.on(
|
222 |
+
triggers=[run_button.click, prompt.submit],
|
223 |
+
fn=inference,
|
224 |
+
inputs=[
|
225 |
+
prompt,
|
226 |
+
seed,
|
227 |
+
randomize_seed,
|
228 |
+
width,
|
229 |
+
height,
|
230 |
+
guidance_scale,
|
231 |
+
num_inference_steps,
|
232 |
+
lora_scale,
|
233 |
+
],
|
234 |
+
outputs=[result, seed, generated_gallery],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
)
|
236 |
|
237 |
+
demo.queue()
|
238 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|