File size: 8,288 Bytes
edb0494
6405936
 
 
 
 
 
edb0494
6405936
 
edb0494
a7d8817
d49f90c
a7d8817
6405936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ab7724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7d8817
80b786b
4ab7724
 
80b786b
4ab7724
a7d8817
 
6405936
4ab7724
 
 
 
 
 
 
 
 
 
 
6405936
 
 
 
 
 
4ab7724
6405936
4ab7724
6405936
 
a7d8817
6405936
a7d8817
15a8627
5bc9409
 
 
 
 
 
 
 
 
 
 
6405936
 
 
 
 
97567b1
 
40a5fd5
97567b1
 
 
 
9cdaf5d
 
6405936
 
97567b1
976671e
 
 
 
 
 
 
 
 
40a5fd5
 
976671e
40a5fd5
 
 
4ab7724
40a5fd5
 
 
 
 
 
 
4ab7724
5bc9409
40a5fd5
5bc9409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c837d9c
 
4ab7724
 
 
 
c837d9c
4ab7724
c837d9c
4ab7724
976671e
 
 
 
 
97567b1
5bc9409
 
 
 
 
 
6405936
 
 
 
 
976671e
4ab7724
6405936
 
 
4ab7724
 
 
 
 
 
 
 
 
6405936
4ab7724
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gradio as gr
import spaces
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download

from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline

from PIL import Image, ImageDraw
import numpy as np

MODELS = {
    "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
}

config_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="config_promax.json",
)

config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
    "xinsir/controlnet-union-sdxl-1.0",
    filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
    controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)

vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")

pipe = StableDiffusionXLFillPipeline.from_pretrained(
    "SG161222/RealVisXL_V5.0_Lightning",
    torch_dtype=torch.float16,
    vae=vae,
    controlnet=model,
    variant="fp16",
).to("cuda")

pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)


@spaces.GPU
def infer(image, model_selection, width, height, overlap_width, num_inference_steps, prompt_input=None):
    source = image
    target_size = (width, height)
    target_ratio = (width, height)  # Calculate aspect ratio from width and height
    overlap = overlap_width

    # Upscale if source is smaller than target in both dimensions
    if source.width < target_size[0] and source.height < target_size[1]:
        scale_factor = min(target_size[0] / source.width, target_size[1] / source.height)
        new_width = int(source.width * scale_factor)
        new_height = int(source.height * scale_factor)
        source = source.resize((new_width, new_height), Image.LANCZOS)

    if source.width > target_size[0] or source.height > target_size[1]:
        scale_factor = min(target_size[0] / source.width, target_size[1] / source.height)
        new_width = int(source.width * scale_factor)
        new_height = int(source.height * scale_factor)
        source = source.resize((new_width, new_height), Image.LANCZOS)

    margin_x = (target_size[0] - source.width) // 2
    margin_y = (target_size[1] - source.height) // 2

    background = Image.new('RGB', target_size, (255, 255, 255))
    background.paste(source, (margin_x, margin_y))

    mask = Image.new('L', target_size, 255)
    mask_draw = ImageDraw.Draw(mask)
    mask_draw.rectangle([
        (margin_x + overlap, margin_y + overlap),
        (margin_x + source.width - overlap, margin_y + source.height - overlap)
    ], fill=0)

    cnet_image = background.copy()
    cnet_image.paste(0, (0, 0), mask)

    final_prompt = "high quality"
    if prompt_input.strip() != "":
        final_prompt += ", " + prompt_input

    (
        prompt_embeds,
        negative_prompt_embeds,
        pooled_prompt_embeds,
        negative_pooled_prompt_embeds,
    ) = pipe.encode_prompt(final_prompt, "cuda", True)

    for image in pipe(
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=negative_prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        image=cnet_image,
        num_inference_steps=num_inference_steps
    ):
        yield cnet_image, image

    image = image.convert("RGBA")
    cnet_image.paste(image, (0, 0), mask)

    yield background, cnet_image

def preload_presets(target_ratio):
    if target_ratio == "9:16":
        changed_width = 720
        changed_height = 1024
        return changed_width, changed_height, gr.update(open=False)
    elif target_ratio == "16:9":
        changed_width = 1024
        changed_height = 720
        return changed_width, changed_height, gr.update(open=False)
    elif target_ratio == "Custom":
        return 720, 1024, gr.update(open=True)

def clear_result():
    return gr.update(value=None)


css = """
.gradio-container {
    width: 1200px !important;
}
"""


title = """<h1 align="center">Diffusers Image Outpaint</h1>
<div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div>
"""

with gr.Blocks(css=css) as demo:
    with gr.Column():
        gr.HTML(title)

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    type="pil",
                    label="Input Image",
                    sources=["upload"],
                    width = 720,
                    height = 720
                )
                
                prompt_input = gr.Textbox(label="Prompt (Optional)")
                
                with gr.Row():
                    target_ratio = gr.Radio(
                        label = "Expected Ratio",
                        choices = ["9:16", "16:9", "Custom"],
                        value = "9:16"
                    )
                    
                    run_button = gr.Button("Generate")

                with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
                    with gr.Column(): 
                        with gr.Row():
                            width_slider = gr.Slider(
                                label="Width",
                                minimum=720,
                                maximum=1440,
                                step=8,
                                value=720,  # Set a default value
                            )
                            height_slider = gr.Slider(
                                label="Height",
                                minimum=720,
                                maximum=1440,
                                step=8,
                                value=1024,  # Set a default value
                            )
                        with gr.Row():
                            model_selection = gr.Dropdown(
                                choices=list(MODELS.keys()),
                                value="RealVisXL V5.0 Lightning",
                                label="Model",
                            )
                            num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8 )

                        overlap_width = gr.Slider(
                            label="Mask overlap width",
                            minimum=1,
                            maximum=50,
                            value=42,
                            step=1
                        )

                gr.Examples(
                    examples=[
                        ["./examples/example_1.webp", "RealVisXL V5.0 Lightning", 1280, 720],  
                        ["./examples/example_2.jpg", "RealVisXL V5.0 Lightning", 720, 1280],  
                        ["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", 1024, 1024],  
                    ],
                    inputs=[input_image, model_selection, width_slider, height_slider],
                )

            with gr.Column():
                result = ImageSlider(
                    interactive=False,
                    label="Generated Image",
                )

    target_ratio.change(
        fn = preload_presets,
        inputs = [target_ratio],
        outputs = [width_slider, height_slider, settings_panel],
        queue = False
    )
    run_button.click(
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then(
        fn=infer,
        inputs=[input_image, model_selection, width_slider, height_slider, overlap_width, num_inference_steps, prompt_input],
        outputs=result,
    )

    prompt_input.submit(
        fn=clear_result,
        inputs=None,
        outputs=result,
    ).then(
        fn=infer,
        inputs=[input_image, model_selection, width_slider, height_slider, overlap_width, num_inference_steps, prompt_input],
        outputs=result,
    )

demo.launch(share=False)