Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -114,52 +114,47 @@ def fill_image(image, model_selection):
|
|
114 |
# Calculate target dimensions
|
115 |
target_width = (target_height * target_ratio[0]) // target_ratio[1]
|
116 |
|
117 |
-
# Resize the source image to fit
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
if source_aspect > target_aspect:
|
122 |
-
new_width = target_width
|
123 |
-
new_height = int(new_width / source_aspect)
|
124 |
-
else:
|
125 |
-
new_height = target_height
|
126 |
-
new_width = int(new_height * source_aspect)
|
127 |
-
|
128 |
resized_source = source.resize((new_width, new_height), Image.LANCZOS)
|
129 |
|
130 |
-
# Calculate margins
|
131 |
-
margin_x = (target_width - new_width) // 2
|
132 |
-
margin_y = (target_height - new_height) // 2
|
133 |
-
|
134 |
# Create a white background
|
135 |
background = Image.new('RGB', (target_width, target_height), (255, 255, 255))
|
136 |
|
|
|
|
|
|
|
|
|
137 |
# Paste the resized image onto the white background
|
138 |
-
position = (margin_x, margin_y)
|
139 |
background.paste(resized_source, position)
|
140 |
|
141 |
# Create the mask
|
142 |
mask = Image.new('L', (target_width, target_height), 255) # Start with all white
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
mask_array = np.array(mask)
|
144 |
|
145 |
-
# Create gradient
|
146 |
for i in range(fade_width):
|
147 |
alpha = i / fade_width
|
148 |
-
# Right edge
|
149 |
-
if margin_x + new_width + i < target_width:
|
150 |
-
mask_array[:, margin_x + new_width + i] = np.minimum(mask_array[:, margin_x + new_width + i], int(255 * alpha))
|
151 |
-
# Left edge
|
152 |
-
if margin_x - i - 1 >= 0:
|
153 |
-
mask_array[:, margin_x - i - 1] = np.minimum(mask_array[:, margin_x - i - 1], int(255 * alpha))
|
154 |
-
# Bottom edge
|
155 |
-
if margin_y + new_height + i < target_height:
|
156 |
-
mask_array[margin_y + new_height + i, :] = np.minimum(mask_array[margin_y + new_height + i, :], int(255 * alpha))
|
157 |
# Top edge
|
158 |
-
if margin_y -
|
159 |
-
mask_array[margin_y -
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
163 |
|
164 |
mask = Image.fromarray(mask_array.astype('uint8'), 'L')
|
165 |
|
|
|
114 |
# Calculate target dimensions
|
115 |
target_width = (target_height * target_ratio[0]) // target_ratio[1]
|
116 |
|
117 |
+
# Resize the source image to fit the target width
|
118 |
+
new_width = target_width
|
119 |
+
new_height = int(source.height * (new_width / source.width))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
resized_source = source.resize((new_width, new_height), Image.LANCZOS)
|
121 |
|
|
|
|
|
|
|
|
|
122 |
# Create a white background
|
123 |
background = Image.new('RGB', (target_width, target_height), (255, 255, 255))
|
124 |
|
125 |
+
# Calculate position to paste the resized image (centered vertically)
|
126 |
+
margin_y = (target_height - new_height) // 2
|
127 |
+
position = (0, margin_y)
|
128 |
+
|
129 |
# Paste the resized image onto the white background
|
|
|
130 |
background.paste(resized_source, position)
|
131 |
|
132 |
# Create the mask
|
133 |
mask = Image.new('L', (target_width, target_height), 255) # Start with all white
|
134 |
+
mask_draw = ImageDraw.Draw(mask)
|
135 |
+
|
136 |
+
# Draw black rectangle for the resized image area (with overlap)
|
137 |
+
mask_draw.rectangle([
|
138 |
+
(-overlap, margin_y - overlap),
|
139 |
+
(new_width + overlap, margin_y + new_height + overlap)
|
140 |
+
], fill=0)
|
141 |
+
|
142 |
+
# Convert mask to numpy array for gradient creation
|
143 |
mask_array = np.array(mask)
|
144 |
|
145 |
+
# Create gradient on the edges that overlap with the image
|
146 |
for i in range(fade_width):
|
147 |
alpha = i / fade_width
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
# Top edge
|
149 |
+
if margin_y - overlap + i < margin_y:
|
150 |
+
mask_array[margin_y - overlap + i, :new_width] = int(255 * alpha)
|
151 |
+
# Bottom edge
|
152 |
+
if margin_y + new_height + overlap - i - 1 >= margin_y + new_height:
|
153 |
+
mask_array[margin_y + new_height + overlap - i - 1, :new_width] = int(255 * alpha)
|
154 |
+
# Left edge
|
155 |
+
mask_array[margin_y:margin_y+new_height, i] = int(255 * alpha)
|
156 |
+
# Right edge
|
157 |
+
mask_array[margin_y:margin_y+new_height, new_width - i - 1] = int(255 * alpha)
|
158 |
|
159 |
mask = Image.fromarray(mask_array.astype('uint8'), 'L')
|
160 |
|