import gradio as gr import spaces import torch from diffusers import AutoencoderKL, TCDScheduler from diffusers.models.model_loading_utils import load_state_dict from gradio_imageslider import ImageSlider from huggingface_hub import hf_hub_download from controlnet_union import ControlNetModel_Union from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline from PIL import Image, ImageDraw import numpy as np MODELS = { "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", } config_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="config_promax.json", ) config = ControlNetModel_Union.load_config(config_file) controlnet_model = ControlNetModel_Union.from_config(config) model_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="diffusion_pytorch_model_promax.safetensors", ) state_dict = load_state_dict(model_file) model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" ) model.to(device="cuda", dtype=torch.float16) vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 ).to("cuda") pipe = StableDiffusionXLFillPipeline.from_pretrained( "SG161222/RealVisXL_V5.0_Lightning", torch_dtype=torch.float16, vae=vae, controlnet=model, variant="fp16", ).to("cuda") pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) @spaces.GPU def infer(image, model_selection, width, height, overlap_width, num_inference_steps, prompt_input=None): source = image target_size = (width, height) target_ratio = (width, height) # Calculate aspect ratio from width and height overlap = overlap_width # Upscale if source is smaller than target in both dimensions if source.width < target_size[0] and source.height < target_size[1]: scale_factor = min(target_size[0] / source.width, target_size[1] / source.height) new_width = int(source.width * scale_factor) new_height = int(source.height * scale_factor) source = source.resize((new_width, new_height), Image.LANCZOS) if source.width > target_size[0] or source.height > target_size[1]: scale_factor = min(target_size[0] / source.width, target_size[1] / source.height) new_width = int(source.width * scale_factor) new_height = int(source.height * scale_factor) source = source.resize((new_width, new_height), Image.LANCZOS) margin_x = (target_size[0] - source.width) // 2 margin_y = (target_size[1] - source.height) // 2 background = Image.new('RGB', target_size, (255, 255, 255)) background.paste(source, (margin_x, margin_y)) mask = Image.new('L', target_size, 255) mask_draw = ImageDraw.Draw(mask) mask_draw.rectangle([ (margin_x + overlap, margin_y + overlap), (margin_x + source.width - overlap, margin_y + source.height - overlap) ], fill=0) cnet_image = background.copy() cnet_image.paste(0, (0, 0), mask) final_prompt = "high quality" if prompt_input.strip() != "": final_prompt += ", " + prompt_input ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipe.encode_prompt(final_prompt, "cuda", True) for image in pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, image=cnet_image, num_inference_steps=num_inference_steps ): yield cnet_image, image image = image.convert("RGBA") cnet_image.paste(image, (0, 0), mask) yield background, cnet_image def preload_presets(target_ratio): if target_ratio == "9:16": changed_width = 720 changed_height = 1024 return changed_width, changed_height, gr.update(open=False) elif target_ratio == "16:9": changed_width = 1024 changed_height = 720 return changed_width, changed_height, gr.update(open=False) elif target_ratio == "Custom": return 720, 1024, gr.update(open=True) def clear_result(): return gr.update(value=None) css = """ .gradio-container { width: 1200px !important; } """ title = """

Diffusers Image Outpaint

Drop an image you would like to extend, pick your expected ratio and hit Generate.
""" with gr.Blocks(css=css) as demo: with gr.Column(): gr.HTML(title) with gr.Row(): with gr.Column(): input_image = gr.Image( type="pil", label="Input Image", sources=["upload"], height = 300 ) prompt_input = gr.Textbox(label="Prompt (Optional)") with gr.Row(): target_ratio = gr.Radio( label = "Expected Ratio", choices = ["9:16", "16:9", "Custom"], value = "9:16", scale = 2 ) run_button = gr.Button("Generate", scale=1) with gr.Accordion(label="Advanced settings", open=False) as settings_panel: with gr.Column(): with gr.Row(): width_slider = gr.Slider( label="Width", minimum=720, maximum=1440, step=8, value=720, # Set a default value ) height_slider = gr.Slider( label="Height", minimum=720, maximum=1440, step=8, value=1024, # Set a default value ) with gr.Row(): model_selection = gr.Dropdown( choices=list(MODELS.keys()), value="RealVisXL V5.0 Lightning", label="Model", ) num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8 ) overlap_width = gr.Slider( label="Mask overlap width", minimum=1, maximum=50, value=42, step=1 ) gr.Examples( examples=[ ["./examples/example_1.webp", "RealVisXL V5.0 Lightning", 1280, 720], ["./examples/example_2.jpg", "RealVisXL V5.0 Lightning", 720, 1280], ["./examples/example_3.jpg", "RealVisXL V5.0 Lightning", 1024, 1024], ], inputs=[input_image, model_selection, width_slider, height_slider], ) with gr.Column(): result = ImageSlider( interactive=False, label="Generated Image", ) target_ratio.change( fn = preload_presets, inputs = [target_ratio], outputs = [width_slider, height_slider, settings_panel], queue = False ) run_button.click( fn=clear_result, inputs=None, outputs=result, ).then( fn=infer, inputs=[input_image, model_selection, width_slider, height_slider, overlap_width, num_inference_steps, prompt_input], outputs=result, ) prompt_input.submit( fn=clear_result, inputs=None, outputs=result, ).then( fn=infer, inputs=[input_image, model_selection, width_slider, height_slider, overlap_width, num_inference_steps, prompt_input], outputs=result, ) demo.launch(share=False)