import gradio as gr import spaces import torch from diffusers import AutoencoderKL, TCDScheduler from diffusers.models.model_loading_utils import load_state_dict from gradio_imageslider import ImageSlider from huggingface_hub import hf_hub_download from controlnet_union import ControlNetModel_Union from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline from PIL import Image, ImageDraw import numpy as np config_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="config_promax.json", ) config = ControlNetModel_Union.load_config(config_file) controlnet_model = ControlNetModel_Union.from_config(config) model_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="diffusion_pytorch_model_promax.safetensors", ) state_dict = load_state_dict(model_file) model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" ) model.to(device="cuda", dtype=torch.float16) vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 ).to("cuda") pipe = StableDiffusionXLFillPipeline.from_pretrained( "SG161222/RealVisXL_V5.0_Lightning", torch_dtype=torch.float16, vae=vae, controlnet=model, variant="fp16", ).to("cuda") pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) def can_expand(source_width, source_height, target_width, target_height, alignment): """Checks if the image can be expanded based on the alignment.""" if alignment in ("Left", "Right") and source_width >= target_width: return False if alignment in ("Top", "Bottom") and source_height >= target_height: return False return True @spaces.GPU(duration=16) def infer(image, width, height, overlap_width, num_inference_steps, prompt_input=None, alignment="Middle"): source = image target_size = (width, height) overlap = overlap_width # Upscale if source is smaller than target in both dimensions if source.width < target_size[0] and source.height < target_size[1]: scale_factor = min(target_size[0] / source.width, target_size[1] / source.height) new_width = int(source.width * scale_factor) new_height = int(source.height * scale_factor) source = source.resize((new_width, new_height), Image.LANCZOS) if source.width > target_size[0] or source.height > target_size[1]: scale_factor = min(target_size[0] / source.width, target_size[1] / source.height) new_width = int(source.width * scale_factor) new_height = int(source.height * scale_factor) source = source.resize((new_width, new_height), Image.LANCZOS) if not can_expand(source.width, source.height, target_size[0], target_size[1], alignment): alignment = "Middle" # Calculate margins based on alignment if alignment == "Middle": margin_x = (target_size[0] - source.width) // 2 margin_y = (target_size[1] - source.height) // 2 elif alignment == "Left": margin_x = 0 margin_y = (target_size[1] - source.height) // 2 elif alignment == "Right": margin_x = target_size[0] - source.width margin_y = (target_size[1] - source.height) // 2 elif alignment == "Top": margin_x = (target_size[0] - source.width) // 2 margin_y = 0 elif alignment == "Bottom": margin_x = (target_size[0] - source.width) // 2 margin_y = target_size[1] - source.height background = Image.new('RGB', target_size, (255, 255, 255)) background.paste(source, (margin_x, margin_y)) mask = Image.new('L', target_size, 255) mask_draw = ImageDraw.Draw(mask) # Adjust mask generation based on alignment if alignment == "Middle": mask_draw.rectangle([ (margin_x + overlap, margin_y + overlap), (margin_x + source.width - overlap, margin_y + source.height - overlap) ], fill=0) elif alignment == "Left": mask_draw.rectangle([ (margin_x, margin_y), (margin_x + source.width - overlap, margin_y + source.height) ], fill=0) elif alignment == "Right": mask_draw.rectangle([ (margin_x + overlap, margin_y), (margin_x + source.width, margin_y + source.height) ], fill=0) elif alignment == "Top": mask_draw.rectangle([ (margin_x, margin_y), (margin_x + source.width, margin_y + source.height - overlap) ], fill=0) elif alignment == "Bottom": mask_draw.rectangle([ (margin_x, margin_y + overlap), (margin_x + source.width, margin_y + source.height) ], fill=0) cnet_image = background.copy() cnet_image.paste(0, (0, 0), mask) final_prompt = f"{prompt_input} , high quality, 4k" ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipe.encode_prompt(final_prompt, "cuda", True) for image in pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, image=cnet_image, num_inference_steps=num_inference_steps ): yield cnet_image, image image = image.convert("RGBA") cnet_image.paste(image, (0, 0), mask) yield background, cnet_image def clear_result(): """Clears the result ImageSlider.""" return gr.update(value=None) def preload_presets(target_ratio, ui_width, ui_height): """Updates the width and height sliders based on the selected aspect ratio.""" if target_ratio == "9:16": changed_width = 720 changed_height = 1280 return changed_width, changed_height, gr.update(open=False) elif target_ratio == "16:9": changed_width = 1280 changed_height = 720 return changed_width, changed_height, gr.update(open=False) elif target_ratio == "Custom": return ui_width, ui_height, gr.update(open=True) def select_the_right_preset(user_width, user_height): if user_width == 720 and user_height == 1280: return "9:16" elif user_width == 1280 and user_height == 720: return "16:9" else: return "Custom" css = """ .gradio-container { width: 1200px !important; } """ title = """

Diffusers Image Outpaint

Drop an image you would like to extend, pick your expected ratio and hit Generate.

Duplicate this Space to skip the queue and enjoy faster inference on the GPU of your choice

""" with gr.Blocks(css=css) as demo: with gr.Column(): gr.HTML(title) with gr.Row(): with gr.Column(): input_image = gr.Image( type="pil", label="Input Image" ) with gr.Row(): with gr.Column(scale=2): prompt_input = gr.Textbox(label="Prompt (Optional)") with gr.Column(scale=1): run_button = gr.Button("Generate") with gr.Row(): target_ratio = gr.Radio( label="Expected Ratio", choices=["9:16", "16:9", "Custom"], value="9:16", scale=2 ) alignment_dropdown = gr.Dropdown( choices=["Middle", "Left", "Right", "Top", "Bottom"], value="Middle", label="Alignment" ) with gr.Accordion(label="Advanced settings", open=False) as settings_panel: with gr.Column(): with gr.Row(): width_slider = gr.Slider( label="Width", minimum=720, maximum=1536, step=8, value=720, # Set a default value ) height_slider = gr.Slider( label="Height", minimum=720, maximum=1536, step=8, value=1280, # Set a default value ) with gr.Row(): num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8) overlap_width = gr.Slider( label="Mask overlap width", minimum=1, maximum=50, value=42, step=1 ) gr.Examples( examples=[ ["./examples/example_1.webp", 1280, 720, "Middle"], ["./examples/example_2.jpg", 1440, 810, "Left"], ["./examples/example_3.jpg", 1024, 1024, "Top"], ["./examples/example_3.jpg", 1024, 1024, "Bottom"], ], inputs=[input_image, width_slider, height_slider, alignment_dropdown], ) with gr.Column(): result = ImageSlider( interactive=False, label="Generated Image", ) use_as_input_button = gr.Button("Use as Input Image", visible=False) def use_output_as_input(output_image): """Sets the generated output as the new input image.""" return gr.update(value=output_image[1]) use_as_input_button.click( fn=use_output_as_input, inputs=[result], outputs=[input_image] ) target_ratio.change( fn=preload_presets, inputs=[target_ratio, width_slider, height_slider], outputs=[width_slider, height_slider, settings_panel], queue=False ) width_slider.change( fn = select_the_right_preset, inputs = [width_slider, height_slider], outputs = [target_ratio], queue = False ) height_slider.change( fn = select_the_right_preset, inputs = [width_slider, height_slider], outputs = [target_ratio], queue = False ) run_button.click( fn=clear_result, inputs=None, outputs=result, ).then( fn=infer, inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps, prompt_input, alignment_dropdown], outputs=result, ).then( fn=lambda: gr.update(visible=True), inputs=None, outputs=use_as_input_button, ) prompt_input.submit( fn=clear_result, inputs=None, outputs=result, ).then( fn=infer, inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps, prompt_input, alignment_dropdown], outputs=result, ).then( fn=lambda: gr.update(visible=True), inputs=None, outputs=use_as_input_button, ) demo.queue(max_size=12).launch(share=False)