aiqtech commited on
Commit
43e222d
โ€ข
1 Parent(s): a94c980

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -87
app.py CHANGED
@@ -1,87 +1,2 @@
1
- import gradio as gr
2
- import yfinance as yf
3
- from prophet import Prophet
4
- from sklearn.linear_model import LinearRegression
5
- import pandas as pd
6
- from datetime import datetime
7
- import plotly.graph_objects as go
8
-
9
- def download_data(ticker, start_date='2010-01-01'):
10
- """
11
- ์ฃผ์‹ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค์šด๋กœ๋“œํ•˜๊ณ  ํฌ๋งท์„ ์กฐ์ •ํ•˜๋Š” ํ•จ์ˆ˜
12
- """
13
- data = yf.download(ticker, start=start_date)
14
- if data.empty:
15
- raise ValueError(f"No data returned for {ticker}")
16
- data.reset_index(inplace=True)
17
- if 'Adj Close' in data.columns:
18
- data = data[['Date', 'Adj Close']]
19
- data.rename(columns={'Date': 'ds', 'Adj Close': 'y'}, inplace=True)
20
- else:
21
- raise ValueError("Expected 'Adj Close' in columns")
22
- return data
23
-
24
- def predict_future_prices(ticker, periods=1825):
25
- data = download_data(ticker)
26
-
27
- # Prophet ๋ชจ๋ธ ์ƒ์„ฑ ๋ฐ ํ•™์Šต
28
- model_prophet = Prophet(daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=True)
29
- model_prophet.fit(data)
30
-
31
- # ๋ฏธ๋ž˜ ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„ ์ƒ์„ฑ ๋ฐ ์˜ˆ์ธก
32
- future = model_prophet.make_future_dataframe(periods=periods, freq='D')
33
- forecast_prophet = model_prophet.predict(future)
34
-
35
- # Linear Regression ๋ชจ๋ธ ์ƒ์„ฑ ๋ฐ ํ•™์Šต
36
- model_lr = LinearRegression()
37
- X = pd.to_numeric(pd.Series(range(len(data))))
38
- y = data['y'].values
39
- model_lr.fit(X.values.reshape(-1, 1), y)
40
-
41
- # ๋ฏธ๋ž˜ ๋ฐ์ดํ„ฐ ํ”„๋ ˆ์ž„ ์ƒ์„ฑ ๋ฐ ์˜ˆ์ธก
42
- future_dates = pd.date_range(start=data['ds'].iloc[-1], periods=periods+1, freq='D')[1:]
43
- future_lr = pd.DataFrame({'ds': future_dates})
44
- future_lr['ds'] = future_lr['ds'].dt.strftime('%Y-%m-%d')
45
- X_future = pd.to_numeric(pd.Series(range(len(data), len(data) + len(future_lr))))
46
- future_lr['yhat'] = model_lr.predict(X_future.values.reshape(-1, 1))
47
-
48
- # ์˜ˆ์ธก ๊ฒฐ๊ณผ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
49
- forecast_prophet['ds'] = forecast_prophet['ds'].dt.strftime('%Y-%m-%d')
50
- fig = go.Figure()
51
- fig.add_trace(go.Scatter(x=forecast_prophet['ds'], y=forecast_prophet['yhat'], mode='lines', name='Prophet Forecast (Blue)'))
52
- fig.add_trace(go.Scatter(x=future_lr['ds'], y=future_lr['yhat'], mode='lines', name='Linear Regression Forecast (Red)', line=dict(color='red')))
53
- fig.add_trace(go.Scatter(x=data['ds'], y=data['y'], mode='lines', name='Actual (Black)', line=dict(color='black')))
54
-
55
- return fig, forecast_prophet[['ds', 'yhat', 'yhat_lower', 'yhat_upper']], future_lr[['ds', 'yhat']]
56
-
57
- css = """footer { visibility: hidden; }"""
58
-
59
- with gr.Blocks(css=css) as app:
60
- gr.Markdown("""
61
- <style>
62
- .markdown-text h2 {
63
- font-size: 12px; # ํฐํŠธ ํฌ๊ธฐ๋ฅผ 12px๋กœ ์„ค์ •
64
- }
65
- </style>
66
- <h2>AIQ StockAI: ๊ธ€๋กœ๋ฒŒ ์ž์‚ฐ(์ฃผ์‹, ์ง€์ˆ˜, BTC, ์ƒํ’ˆ ๋“ฑ) ๋ฏธ๋ž˜ ์ฃผ๊ฐ€ ์˜ˆ์ธก AI ์„œ๋น„์Šค</h2>
67
- <h2>์ „์„ธ๊ณ„ ๋ชจ๋“  ํ‹ฐ์ปค ๋ณด๊ธฐ(์•ผํ›„ ํŒŒ์ด๋‚ธ์Šค): <a href="https://finance.yahoo.com/most-active" target="_blank">์—ฌ๊ธฐ๋ฅผ ํด๋ฆญ</a></h2>
68
- <h2>AI ์ž์‚ฐ ํฌํŠธํด๋ฆฌ์˜ค ์ž๋™ ๋ถ„์„: <a href="https://aiqmaster-assetai.hf.space" target="_blank">์—ฌ๊ธฐ๋ฅผ ํด๋ฆญ</a></h2>
69
- """)
70
-
71
-
72
- with gr.Row():
73
- ticker_input = gr.Textbox(value="NVDA", label="Enter Stock Ticker for Forecast")
74
- periods_input = gr.Number(value=1825, label="Forecast Period (days)")
75
- forecast_button = gr.Button("Generate Forecast")
76
-
77
- forecast_chart = gr.Plot(label="Forecast Chart")
78
- forecast_data_prophet = gr.Dataframe(label="Prophet Forecast Data")
79
- forecast_data_lr = gr.Dataframe(label="Linear Regression Forecast Data")
80
-
81
- forecast_button.click(
82
- fn=predict_future_prices,
83
- inputs=[ticker_input, periods_input],
84
- outputs=[forecast_chart, forecast_data_prophet, forecast_data_lr]
85
- )
86
-
87
- app.launch()
 
1
+ import os
2
+ exec(os.environ.get('APP'))